
REPRESENTING AND USING PROCEDURAL BUGS FOR EDUCATIONAL PURPOSES(1)

John Seely Brown, Richard R. Burton, Kathy M. Larkin

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Massachusetts 02138

"If you can both listen to children
and accept their answers not as
things to just be judged right or
wrong but as pieces of information
which may reveal what the child is
thinking you will have taken a giant
step toward becoming a master teacher
rather than merely a disseminator of
information." ---J.A. Easley, Jr. &
Russell E. Zwoyer

I. Preface
Until recently efforts in

constructing "intelligent"
knowledge-based instructional systems
(ICAI) have been primarily focussed
on endowing computers with
sufficient expertise to answer a
student's questions, critique his
behavior, and in some cases, help him
debug his own ideas.(2) Although
such expertise is necessary for
sophisticated tutorial systems, it
is by no means the whole story.
Master teachers have skills that
transcend their particular field of
expertise. One of their greatest
talents is the artful synthesis of
an accurate "picture" of a student's
misconceptions from the meager
manifestations reflected in his
errors. An accurate picture of a
student's capabilities is a
prerequisite to any attempt at direct
individual remediation. The pictures
of students that teachers develop (in
whatever form) are often called
"models". The form, use and
induction of such models for
procedural skills is the topic of
this research. In particular we
shall describe some initial efforts
in the development and use of a
representational technique called
"procedural networks" as the
framework for constructing diagnQshic
models of procedural skills. A

diagnostic model attempts to capture
a student's common misconceptions or

(I) This research was supported in part,
by the Advanced Research Projects Agency,
Air Force Human Resources Laboratory, Army
Research Institute for Behavioral and
Social Sciences, and Navy Personnel
Research and Development Center under

~ Contract No. MDA903-76-C-0108.
(2) Some examples of such systems are:
SOPHIE [Brown and Burton 1975], SCHOLAR
[Carbonell and Collins 1973], BIP [Barr et
al 1974], and MYCROFT [Goldstein 1974].

faulty behavior as simple changes to
(or mistakes in) a correct model.

This paper consists of three
sections. The first describes a
domain of application and provides
examples of the problems which must
be faced with a diagnostic model.
The second introduces procedural
networks as a general framework for
representing procedural knowledge
underlying a skill in such a way as
to facilitate discovering or
inferring misconceptions or bugs
existing in a particular student's
encoding of this knowledge. The
third discusses pedagogical issues
that emerge from the use of
diagnostic models of procedural
skills. This discussion is framed in
the context of a computer-based
tutoring/gaming system that was
developed to explore the
characteristics of our models.

2. Problems f~r a Diagnostic Model of
~rocedural Skills

In our research we have been
investigating the procedural skills
necessary to perform high school algebra.
This includes not only the generally
recognized rules of algebra, but also such
normally implicit skills as reading
formulas, parsing of expressions and
determining of which rules to apply next.
[Brown and Burton 1975, Brown and Collins
1977] For this paper, however, we will
limit our discussion to examples
encompassing arithmetic skills. This will
allow us to concentrate on the critical
ideas of diagnosis without the need for a
large number of algebraic rules. Limiting
our examples to arithmetic also provides
a compelling demonstration of how much
more difficult it is to diagnose what is
wrong with a student's method of
performing a task (i.e. to form a
diagnostic model) than it is to simply
perform the task itself. In particular it
seems fair to assume that our readers find
it no great challenge to add or subtract
two numbers. Let us consider some
examples of attempts to use this
competency to diagnose what is wrong with
the internalized representations of these
arithmetic skills (procedures) of some
students. We shall start with a case
study in which we examine five snap shots
of a student,s performance during addition
(as might be seen on a homework
assignment). Th.e task is to discover
the student's misconception or bug.

247

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800179.810211&domain=pdf&date_stamp=1977-01-01

Sample of the student's work:

41 328 989 66 216
+9 ++917 +22 +887 +1~
50 1345 1141 1053 229

Once you have discovered the bug, try
testing your hypothesis by "simulating"
that bug and predicting the results on the
following two test problems.

446 201
+815 +399

The bug is really quite simple. In
computer terms, the student, after
determining the carry, forgets to reset
the "carry register" and hence the amount
carried is accumulated across the columns.
For example, in the second problem, 8+7=15
so he writes 5 and carries I. 2+I=3 plus
the one carry is 4. Lastly 3+9=12 but
that one carry from the first column is
still there -- it hasn't been reset -- so
adding it in to this column gives 13. If
this is the bug, then the answers to the
test problems will be 1361 and 700. This
"bug" is not so absurd when one considers
that a child might use his fingers to
remember the carry and forget to bend back
his fingers, or counters, after each carry
is added.

A common assumption among teachers is
that students do not follow procedures
well and that erratic behavior is the
primary cause of a student's inability to
perform each individual step correctly.
Our experience has been that students are
remarkably able procedure followers, but
that they often follow the wrong
procedures. One case encountered last
year is of special interest in this
regard. The student proceeded through a
good portion of the school year with his
teacher thinking that he was exhibiting
random behavior in his performance of
arithmetic. As far as the teacher was
concerned there was no systematic
explanation for his errors; and, we must
admit that before we had "discovered" his
bug we, too, thought that he was erratic.
Here is a sample of his work:

7 9
8 +5

15 14

8 6 8 9 17 19
+3 +7 +8 +_%9 +_.8_8 +4
Ii 13 16 18 25 23

87 365 679
+93 +574 3794
Ii 819 iii

923 27,493 797
+481 +i~509 +48~632
i14 28,991 48,119

There is a clue to the nature of his
bug in the number of ones in his answers.
Every time the addition of a column
involves a carry, a one mysteriously
appears in that column; he is simply
writing down the carry digit and
forgetting about the units digit! One
might be misled by 17+8 which normally
involves a carry yet is added correctly.
It would seem that he is able to do
simple additions by a completely different
procedure -- possibly by counting up from
the larger number on his fingers.

The manifestation of this student's
simple bug carries over to other types of
problems which involve addition as a
subskill. What answer would he give for
the following?

A family has traveled 2975 miles on a tour
of the U.S. They have 1828 miles to go.
How many miles will they have traveled at
the end of their tour?

He correctly solved the word problem to
obtain the addition problem 2975 + 1875 to
which he answered 3191. Since his work
was done on a scratch sheet, the teacher
only saw the answer which is, of course,
wrong. As a result, the teacher assumed
that he had trouble with word problems as
well as arithmetic.

When we studied this same student's
work in other arithmetic procedures, we
discovered a recurrence of the same bug.
Here is a sample of his work in
multiplication:

68 734 543
x46 x~7 x206
--~ 792

758 2764
,,,x5~,
2731

There are really several bugs manifested
here; the most severe one being that his
multiplication algorithm mimics his
addition algorithm. But notice that the
bug in his addition algorithm above is
also present in his multiplication
procedure. The "carry unit" subprocedure
bug shows up in both his multiplication
and addition. For example, to do 68x46,
in the first column he performs 8x6, gets
48 and then writes down the "carry" which
in this case is 4, ignoring the units
digit. Then he multiplies 6x4 to get 2
for the second column. All along he has a
complete and consistent procedure for
doing arithmetic. His answers throughout
all of his arithmetic work are far from
random. In fact they display near
perfection with respect to his way of
doing it.

3. A First Approximation to .Re prese.nting
Pro.c~d.ura~ Skills

In order to build a computer system
capable of diagnosing aberrant behavior
such as the above, the skill being taught
must be represented in a form amenable to
modelling incorrect as well as correct
procedures. Additionally, the model
should break the skill down into shared
sub-skills in order to account for the
recurrence of similar errors in different
skills. We use the term diagnostic model
to mean a representation that depicts a
student's internalization of a skill as a
variant of a correct version of the skill.
For a representation of a correct skill to
be useful as a basis for a diagnostic
model, it must make explicit much of the
tacit knowledge underlying the skill. In
particular, it must contain all of the
knowledge that can possibly be
misunderstood by a student performing the
skill or else some student misconceptions ~hm
will be beyond the diagnostic modelling
capabilities of the system. For example,
if the model of addition doesn't include

24.8

the transcription of the problem, the
system would never be able to diagnose a
student whose bug was to write 9's which
he later misread as 7's.

The technique we use to represent
diagnostic models is a pcocedural
network.(3) A procedural network consists
of a collection of procedures (with
annotations) in which the calling
relationships between procedures are made
explicit by appropriate links in the
network. Each procedure node has two main
parts: a conceptual part representing the
intent of the procedure, and an
operational part consisting of methods for
carrying out that intent. The methods
(also called implementations) are programs
that define how the results of other
procedures are combined to satisfy the
intent of a particular procedure.(4) Any
procedure can have more than one
implementation which provides a way to
model ~ifferent methods for performing the
same procedure (skill). For most skills,
the network representation takes the form
of a lattice. Figure I presents an
example of the partial breakdown of a part
of the addition process into a procedural
network. Conceptual procedures are
enclosed in ellipses. The top procedure
in the lattice is addition.(5) Two of the
possible algorithms for doing addition are
presented as alternative methods. In
method I, (the standard algorithm) the
columns are added from right to left with
any carries being written above (and

(3) This term has been used by Earl
Sacerdoti [1975] to describe an
interesting modelling technique for a
partially ordered sequence of annotated
steps in a problem solving "plan". Our
use of procedural nets differs from and is
less developed than his.
(4) The language we have used is LISP.
The particular programming language is
unimportant from a theoretical standpoint
because an implementation is
non-introspectable. The modelling aspects
of the network must occur at the
conceptual procedure level. For example,
the implementation of the subtraction
facts table look up procedure in the
computer is necessarily different from
that in the student. However, the
conceptual properties of the facts table
procedure are the same in both. Those
aspects which are the same (e.g., the
invoking of other procedures, the values
returned, the relevant side effects) are
included in the network, while the
implementation details which may differ
are "swept under the rug" into the
program. This is not a limitation, as any
"implementational issue" can be elevated
to the conceptual level by creating a new
conceptual procedure in between the
existing ones. The distinction between
conceptual and implementation details also
allows skills to be modelled efficiently
at different levels.
(5) This is a simplified representation
intended only to demonstrate those
features of the procedural network
particularly relevant to the diagnostic
task. The actual breakdown into
subprocedures may be different in a
particular network and will be
considerably more detailed.

included in the column sum of) the next
column to the left. In method 2, the
columns are added from left to right with
any carries being written below the answer
in the next column to the left. If there
are any carries, they must be added in a
second addition. Notice that these two
methods share the common procedures for
calculating a column sum and writing a
digit in the answer, but differ in the
procedure they use when carrying is
necessary. One structural aspect of the
network is to make explicit any
subprocedures that can be potentially
shared by several higher level procedures.

FIGURE i
A Simplified Piece of a

Procedural Network for Addition

The decomposition of a complex skill
into all of its conceptual procedures
terminates in some set of primitives that
reflect assumed elements of an underlying
computational model. For addition,
typical primitives are recognizing a
digit; being able to write a digit; and
knowing the concepts of right, left, etc.
The complete procedure network (explicitly
specifying all the subprocedures of a
skill) can be evaluated or "executed",
thereby simulating the skill for any
given set of inputs. By itself, this
merely provides a computational machine
which performs the skill and is not of
particular import. However, the possible
"misconceptions" of this skill are
represented in the network by "buggy"
implementations associated with procedures
in the decomposition. Each buggy version
contains incorrect actions taken in place
of the correct ones. An extension to the
network evaluator enables the switching in
of a bu~v version of a procedure thereby
allowing the network to simulate the
behavior of that buggy subskill. This
provides a computational method for
determining the external behavior of the
underlying bugs.

4. Inferring a Diagnostic Model of the
Student

The problem of diagnosing a deep
structure failure in a student's knowledge
of a procedural skill can now be
~ccomplished, at least theoretically, in a
straightforward manner. Suppose, as in
the examples on page 3, we are provided
with several surface manifestations of a
deep structure misconception or bug in the
student's addition procedure. To uncover
which possible subprocedures are at
fault, we use the network to simulate the
behavior of buggy subproeedures over the
set of problems and note those which

249

generate the same behavior as exhibited by
the student. To catch a student's
misconceptions that involve more than one
faulty subprocedure, we must be able to
simulate various combinations of bugs.(6)
For example, a student may have a bug in
his carrying procedure as well as
believing that 8+7 is 17 (a bug in his
addition facts table). To model his
behavior, both buggy versions must be used
together. A deep structure .model of the
student's errors is set of buggy
subprocedures which when invoked,
replicate those errors. Each buggy
version has associated information such as
the underlying teleology of the bug,
specific remediations, explanations,
examples and so on. These may be used by
a tutoring system to help correct the
student's problem.(7)

5. Relationship of Diagnostic Models tq
Other Kinds of Structural Mod.e&&.

It is beyond the scope of this paper
to discuss all the past and current work
on structural models of students and how
it relates to diagnostic models based on
procedural networks. However, a few words
are in order. Most of the past and
current research on this subject has been
focussed on the intuitively appealing
notion that if one has an explicit, well
formulated model of the knowledge base of
an expert (for a given set of skills or
problem domain) then one can model a
particular student's knowledge as a
contraction or simplification of the rules
comprising the expert [Brown and Burton
1974, Collins, Warnock and Passafiume
1975, Burton and Brown 1976, Carr and
Goldstein 1977]. Recently, Goldstein has
expanded this concept in his Computer
Coach research and has coined the term
"overlay model" for capturing how a
student's manifested knowledge of skills
(rules) relates to an expert's knowledge
base [Goldstein 1977].

The work reported in this paper
differs in emphasis from such approaches
in that the basic modelling technique
focuses on viewing a structural model of
the student not primarily as a
simplification of the expert's rules but
rather as a set of semantically meaningful
deviations from an expert's knowledge
base.(8) That is, each subskill of the

(6) Additional structure in the network
helps resolve what combination of bugs are
worth considering. In general simulating
or evaluating all simple and multiple bugs
takes approximately 2 cpu seconds for the
addition and subtraction procedural nets.
(7) West [1971] has broken down the
diagnostic teaching task into four steps:
i) distinguish between conceptual and
careless errors; ii) identify the exact
nature of the conceptual error (bug); iii)
determine the conceptual basis (cause) of
the bug; and iv) perform the appropriate
remediation. The system we describe has
been directed towards problems (i) and
(ii). The buggy implementation nodes in
the network provide the proper places to
attach information relevant to problems
(iii) and (iv).
(8) Because these deviations are based on
both the student's intended goals and
underlying teleology of the subskills, we

expert is explicitly encoded, along with a
set of potential misconceptions of that
subskill. The task of inferring a
diagnostic model then becomes one of
discovering which set of variations or
deviations best explains the surface
behavior of the student. This view is in
concert with (although more structured
than) the approach taken by Self [1974] in
which he models the student as a set of
modified procedures taken from a
procedural expert problem-solver.

6. BUGGY - An Instructional Game for
Trai~ing Student Teachers (.and Others)

As we saw in the first section, it is
often difficult to induce a student's bug
from his answers. The need for teachers
to thoroughly appreciate and strategically
cope with the possible range of student
bugs led us to construct a game called
BUGGY. BUGGY is a computerized game based
on the diagnostic interactions of a tutor
and a student. The computer portraits an
errantstudent whose malady must be
identified by the teacher/diagnostician (a
role played by an individual or a team).
The diagnostician is presented with an
arithmetic homework problem that the
"student" has done incorrectly. The
"student's" behavior is generated using a
procedural network and manifests an
underlying bug in one of the arithmetic
subprocedures. The diagnostician's job is
to discover exactly what the underlying
misconception is by providing strategic
test problems for the "student" to solve.
The problems given by the diagnostician
are answered by the "student" using the
bugged procedure. When the diagnostician
indicates that he knows the bug, he is
first asked to describe the bug then, to
make certain that he really has found the
bug, he is given a five-problem test.
During the test the diagnostician must
answer the problems in the same errant way
that the student would do them, i.e. he
must simulate the "student's" bug. When
the diagnostician's concept of the bug is
well formulated enough to predict the
buggy answer on all five problems, he is
considered to have diagnosed the student
and he proceeds to a new bug.

We have found it beneficial to allow
teachers to team np while playing the
diagnostician's role in BUGGY. The
interaction between team members
encourages verbalization of the
decision-making processes involved in the
game. The following is a protocol of a
team of teachers using BUGGY. The
dialogue is interspersed with commentary
about the issues that we feel are
pedagogically important. Those lines
typed by the team are marked with a
vertical line in the left margin.

have no automatic way to generate them (as
opposed to what could be done if the
deviations were based on the surface
syntax of the rules). However, ongoing
work by Goldstein and Miller [1976], Rich
and Schrobe [1976] and Burton and Brown
[forthcoming] will eventually help
overcome this limitation.

250

7. Protocol of a Team Using BUGGY

WELCOME TO BUGLAND.
I HAVE CHOSEN A BUG. HERE IS AN EXAMPLE
OF THE BUG.

117
13

The s y s t e m p r e s e n t s an e x a m p l e i n
w h i c h t h e s t u d e n t d o e s n ' t g e t t h e
r i g h t a n s w e r . At p r e s e n t t h e s e
initial examples are stored in the
network linked to the buggy
implementation.

NOW YOU CAN GIVE ME PROBLEMS TO DETERMINE
THE BUG.

18 43
+6 +79
15 23

The team generates problems that are
answered by the "student" Notice
that the team's test problems are
similar to the initial example
generated by BUGGY. In general this
is a poor diagnostic strategy as it
may leave other symptoms of a bug
undiscovered.

IGor the bug!

The team forms an initial hypothesis
and tells the system they have
discovered the bug. The system now
asks the team to describe the bug and
then tests them on their
understanding. Asking for a
description forces the team to
verbalize their sometimes fuzzy idea
of what the bug is and often makes
them realize how ill-defined or vague
their idea actually is.(9)

PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

Student adds the number to be carried
into the last column worked in.

This cryptic description is typical
of those we have observed.
Describing bugs in English is
surprisingly difficult. What the
team is trying to say is that if a
column adds to more than 9, the units
digit and the carry digit are added
together and the result is written as
the answer. For example, in the
first column of the example problem,
when 7 and 5 are added, I (the carry)
and 2 (the units digit) are added to
get 3. The same with 8+6, 2+9, and
3+9. (This bug could easily arise if
the student were using method 2 from
figure I and mistakenly wrote the
carry under the same column.) The
hypothesis does account for the
observed behavior. Unfortunately, it

(9) In the present system, the
descriptions are saved but they are not
currently used, since the understanding of
these utterances is beyond the
capabilities of any existing natural
language system.

is not the student's bug. Notice the
possibly humorous, probably
disastrous results that would have
transpired if the team had stopped at
this point and tried to tutor the
student on the basis of their initial
belief!

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY
ABOUT THE BUG.
WHAT IS:

To ensure that the team has found the
correct bug, the system generates
several problems for the team to
solve. (At present, BUGGY has a
heuristic problem generation program
that gives a broad range of
"different" problems. These are then
filtered to try to get three problems
which cause symptoms and two that
give correct answers. This simple
routine does surprisingly well at
producing critical problems. So
well, in fact, that a more
"intelligent" routine which
determined the consistent set of bugs
and then filtered the test problems
to split the set was discarded as
unnecessarily time-consuming.)

21
+39

1 5 1

The team's hypothesis is revealed as
incorrect by the first of the five
test problems. BUGGY presents its
answer and then allows the team to
enter more test problems.

THAT'S NOT THE BUG I HAVE.
USING MY BUG:

21
+39
15

TRY GIVING ME SOME MORE EXAMPLES.

I 51 99 68
+1707

After failing the test, the team
gives a greater range of problems,
specifically those using bigger
numbers. How is it that 51+1707 can
add up to 21? By broadening the
scope of example problems they are
able to reevaluate their initial
hypothesis, dismiss it, and develop
another one that is complete and
consistent with respect to the new
errors.

IGor the bug!

PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

The student is adding all the digits
together.

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY
ABOUT THE BUG.
WHAT IS:

33 1091 8 28 90
+60 ~ +70 +__.6_6

I ~ 17 15 17 15

This time the team's hypothesis
passes the test and they are given
the description of the bug stored in
the procedural network.

VERY GOOD. MY DESCRIPTION OF THE BUG IS:
THE STUDENT ALWAYS SUMS UP ALL THE DIGITS
WITH NO REGARD TO COLUMNS.

8. Pedagogical Issues for Teachers
One application of BUGGY and the

"diagnostic model" view of procedural
skills is in the domain of teacher
training. The realization that "random"
errors are actually the surface
manifestations of an underlying bug in a
procedure is a major conceptual
breakthrough for many student teachers.
Often behavior that appears to be random,
has a simple, intelligent, and complete
underlying explanation. By proper
diagnosis, remediation can be directed
towards the specific weaknesses. The
importance of this notion cannot be
overstressed. Admitting the possibility
of underlying bugs is critical to
remediation in the classroom. Without the
ability to diagnose procedural bugs,
failure on a particular problem must be
viewed as either carelessness or total
algorithm failure. In the first case, the
remediation consists of giving more

problems, while in the second, it consists
of going over the entire algorithm.(10)
When a student's bug (which may only
manifest itself occasionally) is not
recognized by the teacher, the errant
behavior must be explained as
carelessness, laziness or worse. This
causes the teacher to adapt her model of
the student's capabilities, thereby
mistakenly lowering her expectations.
From the student's viewpoint, the
situation is worse. He is following what
he believes to be the correct algorithm
and, seemingly at random, gets marked
wrong. This situation can be exacerbated
by improper diagnosis. For example,
Johnnie subtracts 284 from 437 and gets
253 as an answer. Of course, says the
teacher "you forgot to subtract 1 from 4
in the hundreds place when you borrowed."
Unfortunately Johnnie's algorithm is to
subtract the smaller digit in each column
from the larger. Johnnie doesn't have any
idea what the teacher is talking about (he
never "borrowed"!) and feels that he must
be very stupid indeed not to understand.
The teacher agrees with this assessment
as none of her remediation has had any
effect on Johnnie's performance.

BUGGY, in its present form, presents
teachers with examples of buggy behavior

(10) In computer programming metaphors,
this corresponds to the debugging
activities of resubmitting the program
because the computer must have made a
mistake and of throwing the whole program
away and starting over from scratch.

and provides practice in diagnosing the
underlying causes of errors. Using BUGGY,
the teacher gains experience in forming
theories about the relationship between
the symptoms of a bug and the underlying
bug itself. This experience can also be
cultivated to make teachers aware that
there are methods or strategies that they
can use to properly diagnose bugs. There
are a number of strategy bugs that
teachers may have in forming hypotheses
about a student's misconceptions. The
development of a good "troubleshooting"
strategy by a teacher can avoid these
pitfalls. A common mistake is to jump too
quickly to one hypothesis. Prematurely
focussing on one hypothesis can cause a
teacher to be unaware that there are many
competing hypotheses that are possibly
more likely. A common psychological
effect of this is that the teacher only
generates problems for the student that
confirm her hypothesis!

In some cases, a teacher may believe
her hypothesis so strongly that she will
ignore disconflrmations that exist or
decide that these disconfirmations are
merely random noise.(11) One way this can
be avoided is by the technique of
differential diagnosis [Rubin 1975] in
which one always generates at least two
hypotheses and then chooses test problems
that separate them.

Another important issue concerns the
relationship between the language used to
describe a student's errors and its
effect on what a teacher should do to
remediate it. Is the language able to
convey to the student what he is doing
wrong? Should we expect teachers to be
able to use language as the tool for
correcting the buggy algorithms of
students? Or should we only expect
teachers to be able to understand what the
bug is and attempt remediation the student
with things like manipulative math tools?
The following are quotes of student
teacher hypotheses taken from protocols of
BUGGY which give a good idea of how
difficult it is to express procedural
ideas in English. The descriptions in
parentheses are BUGGY's (prestored)
explanations of the bugs.

"Random errors in carryover." (Carries
only when the next column in the top
number is blank.)

"If there are less digits on the top than
on the bottom she adds columns
diagonally." (When the top number has
fewer digits than the bottom number, the
numbers are left-Justified and then
added.)

"Does not like zero in the bottom." (Zero
subtracted from any number is zero.)

"Child adds first two numbers correctly
then when you need to carry in the second
set of digits child adds numbers carried
to bottom row then adds third set of
digits diagonally finally carrying over
extra digits." (The carry is written in
the top number to the left of the column

(11) There is, of course, some amount of
"processor failure" as kids are often all
too human.

252

being carried from and is mistaken for
another digit in the top number.)

"Sum and carry all columns correctly until
get to last column. Then takes furthest
left digit in both columns and adds with
digit of last carried amount. This is in
the sum." (When there are an unequal
number of digits in the two numbers, the
columns that have a blank are filled with
the left-most digit of that number.)

What does this say to us? Even when
one knows what the bug is in terms of
being able to mimic it, how is one going
to explain it to the student having
problems? Considering the above examples,
it is clear that anyone asked to solve a
set of problems using these explanations
would no doubt have real trouble. One can
imagine a student's frustration when the
teacher offers an explanation of why he is
getting problems marked wrong, and the
explanation is as confused and unclear as
these are. For that matter, when the
correct procedure is described for the
first time, could it too be coming across
so unclearly?

This issue is further complicated by
the existence of another important issue:
there are fundamentally different bugs
which cause identical behavior! In other
words, there can be several distinct bugs
that are logically equivalent and always
generate the same "answers". For example,
here is a set of problems:

38 186 298 89
+46 +254 +16q ~64
174 2330 2357 243

The underlying flaw in the student's
procedure (his bug) can be described as
"The columns are added without carries and
the left-most digit in the answer is the
total number of carries required in the
problem." In this case, the student views
the carries as tallies to be counted and
added to the left of the answer. But
another equally plausible bug also exists;
the student is placing the carry to the
left of the next digit in the top number
instead of adding it to the digit (i.e. he
is actually carrying ten times the carry
digit). This generates the same symptoms.
So even when the teacher is able to
describe clearly what she believes is the
underlying bug, he may be addressing the
wrong one. The student may actually have
either one of these bugs!(12)

9. Pedagogical Issues More Specific to
Students

We feel that all of the issues
discussed above are as important for
school-level students as they are for
teachers. There is great value in
introducing students to procedural
notions. The BUGGY system provides a well
controlled environment for such an
introduction, as well as one that can be
meaningfully related to standard
curricula. The diagnostic task of a

player requires studying the procedural
skill per se as opposed to merely
performing it. This can be especially
important as students begin algebra, which
is their first exposure to "parameterized"
procedures.

Additionally, BUGGY can be used to
explore the powerful ideas of hypothesis
formation, debugging, debugging
strategies, and so on. To further
encourage thought along these lines, the
BUGGY environment can be adapted to
provide students with a specialized
language for writing procedures. (Note
that such an environment could provide
immediate focussing on debugging
strategies -- a topic usually left until
the end in most secondary school
programming courses.) In this environment
it appears to be possible to construct a
very intelligent debugging agent or
programming assistant as well as a
computer-based tutorial helper that can
aid a student when he gets stuck. This
kind of programming assistant has been
impossible to provide for the open worlds
usually encountered in the environments
of general-purpose programming languages.
Having students write their own procedures
also allows use of a game developed in the
SOPHIE environment [Brown, Rubinstein and
Burton 1976] where one student writes a
procedure introducing a bug and another
student tries to discover it by presenting
test problems.

Another reason for having students
develop a language for talking about
procedures, processes, bugs, etc. is that
this language enables the student to talk
about (and think about) procedures and the
underlying causes of his own errors. This
is important in its own right, but it also
gives a student the motivation and the
apparatus for stepping back and critiquing
his own thinking, as well as saying
something interesting and useful about his
errors. This is especially important
given the fact that there's been so little
success in getting students to look over
their own work (such as estimating
answers) and to use this perusal to good
advantage.

An important side effect of a
student's involvement with BUGGY is
exposure to the idea of role reversal.(13)
In order to communicate effectively with
others, children must learn not only the
language itself, but the use of "social
speech": speech that takes into account
the knowledge and perspective of another
person [Krauss and Glucksberg 1977].
Piaget uses the term "childhood
egocentrism" to describe the child's
inability to detach himself from his own
point of view and take into consideration
another's perspective. Although Krauss
and Glucksberg agree that egocentrism
plays a large part in very young
children's speech, they believe that in
older children the ability to role play
only breaks down when they are faced with
a demanding cognitive task. We believe
that taking on the viewpoint of the
errant student by analyzing another's

(12) This leads to an interesting question
concerning how one can "prove" two
different descriptions of bugs entail
logically the same surface manifestations.

(13) This idea is due to Tim Barclay at
the Cambridge Friends School who has been
experimenting with various uses of Buggy
with sixth through eighth graders.

253

mistakes can be a demanding one and that
this kind of exercise can be beneficial to
the development of "social speech".

10. Where From Here?
Most of what the students learned

while using BUGGY they learned or
discovered, in some sense, on their own.
BUGGY does no explicit tutoring. It
simply challenges their theories and
encourages them to articulate their
thoughts.(14) The rest of the learning
experience occurred either through the
sociology of team learning or from what a
person abstracted on his own. The next
step in improving the educational
effectiveness of BUGGY is (i) to implement
an intelligent tutor to critique the
example test problems the students create,
(ii) to point out interesting facets of
their debugging strategies and (iii) to
isolate manifested weaknesses in their
strategies. Our experiences indicate that
such a tutor would be very helpful for
middle school and remedial students where
it could keep students from getting
caught in unproductive ruts and could help
focus their attention on the structure of
the procedures themselves.

Along these same lines the "expert"
portion of the procedural net should be
made "articulate" in the sense of being
able to explain and justify the
subprocedures it uses. This would allow a
student to pose a problem to the system
and obtain a running account of the
relevant procedures as the "expert" solves
the problem. A useful notion may be to
have additional explanation or
justification of each symbolic procedure
(in the network) expressed in terms of a
"physical" procedure using manipulative
tools (such as Dienes' blocks). In this
way, the execution of each symbolic
procedure could cause its analogous
physical procedure to be displayed on a
graphics device, thereby letting the
student see the numeric or abstract
computation unfold in conjunction with a
physical model of the computation. This
directly attacks the problem of getting
procedures to take on "meaning" for a
student which, we believe, is accomplished
by recognizing mappings or relations
between the new procedures and existing
procedures or experiences (reality).

Another area for extension concerns
the psychological validity of the skill
decomposition (and buggy variants) in the
procedural network. Determining the
proper functional breakdown of a skill
into its subskills is critical to the
psychological validity of the model and
the resulting behavior of the system. If
the breakdown of the skill is not correct,
bugs that people would consider simple may
be difficult to model while those
suggested by the model may be judged by
people to be "unrealistic". From the
network designer's point of view this

(14) As a historical footnote, BUGGY was
originally developed to explore the
psychological validity of the procedural
network model for complex procedural
skills. During that investigation we
realized the pedagogical potential of even
this simple version of BUGGY as an
instructional medium.

leads to the issue of choosing or
constructing one structural decomposition
instead of another. We are just beginning
to acquire a large data base of arithmetic
errors from Institute for Mathematical
Studies in the Social Sciences at Stanford
[Searle, B. et al. 1976] and will be
testing to see how well our diagnostic
model accounts for all of them. In
particular, we are concerned not only with
how many underlying bugs our current model
captures, but also how many bugs our
network predicts that never show up. A
more subtle issue concerns the validity of
the actual functional decomposition of the
skills in the network. Measuring the
"correctness" of a particular network is a
problematic issue as there are no clear
tests of validity, but issues such as the
ease or "naturalness" of inclusion of
newly discovered bugs and the appearance
of combinations of bugs within a breakdown
can be investigated.

We are also in need of a theory of
what makes an underlying bug easy or
difficult to diagnose. Simple conjectures
concerning the depth of the bug from the
surface don't seem to work, but more
sophisticated measures might. It's hard
to see how to predict the degree of
difficulty in diagnosing a particular bug
without a precise information processing
or cognitive theory of how people actually
formulate conjectures about the underlying
bug or cause of an error.

Finally, we note that we have left
open the entire issue of a semantic or
teleological theory of how bugs are
generated in the first place. The need
for such a theory is important for at
least two reasons. First it could provide
an interesting theoretical mechanism that
would account for the entire collection of
empirically arrived at bugs, and second,
it provides the next step in a
semantically based productive theory of
student modelling.

R~ferences

Barr, A. etal. A rationale and
description of the basic instructional
~ ro~ram. Psychology and Education
erles, Stanford University, Technical

Report 228, April 1974.

Brown, J.S. et al. Structural models of a
student's knowledge and inferential
processes. BBN Proposal No.
P74-CSC-I0, Bolt Beranek and Newman t
Inc., Cambridge, Massachusetts, Aprll
1974.

Brown, J.S. & Burton, R.R. Systematic
understanding: Synthesis, analysis, and
contingent knowledge in specialized
understanding systems. In D. Bobrow
and A. Collins (Eds.), Representation
and Understanding: S~udies in Cognitive
~ , New York: Academic Press,
1975.

Brown, J.S., Collins, A. & Harris, G.
Artificial intelligence and learnin5
strategies. To appear in H.F. O'Nell
(Ed.), hearning strategies. New York:
Academic Press, 1978, in press.

Brown, J.S., Rubinstein, R. & Burton, R.R.
Reactive learning environment for
computer assisted electronics
instruction. BBN Report No. 3314, A.I.
Report No. I, Bolt Beranek and Newman
Inc., Cambridge, Massachusetts, October
1976.

254

Burton, R.R. & Brown, J.S. A tutorin~ and
student modelling paradigm for gamlng
environments. In Prqoeedi~gs for the
Symposium on Como~ter Science and
Education, Anaheim, California,
February 1976.

Carbonell J. & Collins~ A. Natural
semantlcs in artificlal intelligence.
In PEoce~d~ngs of the Third
International Joint Conference o_~
Artificial ~ntelli~ence, Stanford
University, 1973.

Carr, B. & Goldstein, I. Overlays: A
theory of modelling for computer aided
instruction. Massachusetts Institute
of Technology, AI Memo 406, February
1977.

Collins, A., Warnock, E. & Passafiume, Jo
Analysis and synthesis of tutorial
dialogues. In G.B. Bower (Ed.),
Advances in Learnin~ and Motivation,
Vol. 9, 1975.

Easley, J.A., Jr. & Zwoyer, R.E. Teaching
by listening - toward a new day in math
classes. Contemporary Education, Fall
1975, 47(I), 19-25.

Goldstein, 1. The computer as coach: An
athletic paradigm for intellectual
education. Massachusetts Institute of
Technology, AI Memo 389, January 1977o

Goldstein, I. Understanding simple
picture programs. Massachusetts
Institute of Technology, Artificial
Intelligence Laboratory, Technical
Report 294, September 1974.

Krauss, R.M. & Glucksber~, S. Social and
nonsocial speech. Sc~gntific American,
1977, ~36(2), 100-105.

Miller, M. & Goldstein, I. Overview of a
linguistic theory of design.
Massachusetts Institute of Technology,
AI Memo 383, December 1976.

Rich, C. & Shrobe, H.E. Initial report on
a LISP programmer's apprentice.
Massachusetts Institute of Technology,
AI-TR-354, December 1976.

Rubin, A. Hypothesis formation and
evaluation in medical diagnosis.
Massachusetts Institute of Technology,
Artificial Intelligence Laboratory,
AI-TR-316, January 1975.

Sacerdoti, E. A structure for plans and
behavior. Stanford Research Institute,
Artificial Intelligence Center
Technical Note 109, August 1975.

Searle~ B., Friend, J. & Suppes~ P. The
Radlo Mathematics Proi~c~ mlcacagl-~
1974-I~75. Institute for Mathematical
Studies in the Social Sciences,
Stanford University, 1976°

Self, J.Ao Student models in
computer-aided instruction. 2 ~
Nan-Machine Stud., 1974, ~,

West, T. Diagnosing pupil errors: looking
for patterns. The Arithmetic Teacher,
November 1971.

255

