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"If you can both listen to children 
and accept their answers not as 
things to just be judged right or 
wrong but as pieces of information 
which may reveal what the child is 
thinking you will have taken a giant 
step toward becoming a master teacher 
rather than merely a disseminator of 
information." ---J.A. Easley, Jr. & 
Russell E. Zwoyer 

I. Preface 
Until recently efforts in 

constructing "intelligent" 
knowledge-based instructional systems 
(ICAI) have been primarily focussed 
on endowing computers with 
sufficient expertise to answer a 
student's questions, critique his 
behavior, and in some cases, help him 
debug his own ideas.(2) Although 
such expertise is necessary for 
sophisticated tutorial systems, it 
is by no means the whole story. 
Master teachers have skills that 
transcend their particular field of 
expertise. One of their greatest 
talents is the artful synthesis of 
an accurate "picture" of a student's 
misconceptions from the meager 
manifestations reflected in his 
errors. An accurate picture of a 
student's capabilities is a 
prerequisite to any attempt at direct 
individual remediation. The pictures 
of students that teachers develop (in 
whatever form) are often called 
"models". The form, use and 
induction of such models for 
procedural skills is the topic of 
this research. In particular we 
shall describe some initial efforts 
in the development and use of a 
representational technique called 
"procedural networks" as the 
framework for constructing diagnQshic 
models of procedural skills. A 

diagnostic model attempts to capture 
a student's common misconceptions or 

(I) This research was supported in part, 
by the Advanced Research Projects Agency, 
Air Force Human Resources Laboratory, Army 
Research Institute for Behavioral and 
Social Sciences, and Navy Personnel 
Research and Development Center under 

~ Contract No. MDA903-76-C-0108. 
(2) Some examples of such systems are: 
SOPHIE [Brown and Burton 1975], SCHOLAR 
[Carbonell and Collins 1973], BIP [Barr et 
al 1974], and MYCROFT [Goldstein 1974]. 

faulty behavior as simple changes to 
(or mistakes in) a correct model. 

This paper consists of three 
sections. The first describes a 
domain of application and provides 
examples of the problems which must 
be faced with a diagnostic model. 
The second introduces procedural 
networks as a general framework for 
representing procedural knowledge 
underlying a skill in such a way as 
to facilitate discovering or 
inferring misconceptions or bugs 
existing in a particular student's 
encoding of this knowledge. The 
third discusses pedagogical issues 
that emerge from the use of 
diagnostic models of procedural 
skills. This discussion is framed in 
the context of a computer-based 
tutoring/gaming system that was 
developed to explore the 
characteristics of our models. 

2. Problems f~r a Diagnostic Model of 
~rocedural Skills 

In our research we have been 
investigating the procedural skills 
necessary to perform high school algebra. 
This includes not only the generally 
recognized rules of algebra, but also such 
normally implicit skills as reading 
formulas, parsing of expressions and 
determining of which rules to apply next. 
[Brown and Burton 1975, Brown and Collins 
1977] For this paper, however, we will 
limit our discussion to examples 
encompassing arithmetic skills. This will 
allow us to concentrate on the critical 
ideas of diagnosis without the need for a 
large number of algebraic rules. Limiting 
our examples to arithmetic also provides 
a compelling demonstration of how much 
more difficult it is to diagnose what is 
wrong with a student's method of 
performing a task (i.e. to form a 
diagnostic model) than it is to simply 
perform the task itself. In particular it 
seems fair to assume that our readers find 
it no great challenge to add or subtract 
two numbers. Let us consider some 
examples of attempts to use this 
competency to diagnose what is wrong with 
the internalized representations of these 
arithmetic skills (procedures) of some 
students. We shall start with a case 
study in which we examine five snap shots 
of a student,s performance during addition 
(as might be seen on a homework 
assignment). Th.e task is to discover 
the student's misconception or bug. 
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Sample of the student's work: 

41 328 989 66 216 
+9 ++917 +22 +887 +1~ 
50 1345 1141 1053 229 

Once you have discovered the bug, try 
testing your hypothesis by "simulating" 
that bug and predicting the results on the 
following two test problems. 

446 201 
+815 +399 

The bug is really quite simple. In 
computer terms, the student, after 
determining the carry, forgets to reset 
the "carry register" and hence the amount 
carried is accumulated across the columns. 
For example, in the second problem, 8+7=15 
so he writes 5 and carries I. 2+I=3 plus 
the one carry is 4. Lastly 3+9=12 but 
that one carry from the first column is 
still there -- it hasn't been reset -- so 
adding it in to this column gives 13. If 
this is the bug, then the answers to the 
test problems will be 1361 and 700. This 
"bug" is not so absurd when one considers 
that a child might use his fingers to 
remember the carry and forget to bend back 
his fingers, or counters, after each carry 
is added. 

A common assumption among teachers is 
that students do not follow procedures 
well and that erratic behavior is the 
primary cause of a student's inability to 
perform each individual step correctly. 
Our experience has been that students are 
remarkably able procedure followers, but 
that they often follow the wrong 
procedures. One case encountered last 
year is of special interest in this 
regard. The student proceeded through a 
good portion of the school year with his 
teacher thinking that he was exhibiting 
random behavior in his performance of 
arithmetic. As far as the teacher was 
concerned there was no systematic 
explanation for his errors; and, we must 
admit that before we had "discovered" his 
bug we, too, thought that he was erratic. 
Here is a sample of his work: 

7 9 
8 +5 

15 14 

8 6 8 9 17 19 
+3 +7 +8 +_%9 +_.8_8 +4 
Ii 13 16 18 25 23 

87 365 679 
+93 +574 3794 
Ii 819 iii 

923 27,493 797 
+481 +i~509 +48~632 
i14 28,991 48,119 

There is a clue to the nature of his 
bug in the number of ones in his answers. 
Every time the addition of a column 
involves a carry, a one mysteriously 
appears in that column; he is simply 
writing down the carry digit and 
forgetting about the units digit! One 
might be misled by 17+8 which normally 
involves a carry yet is added correctly. 
It would seem that he is able to do 
simple additions by a completely different 
procedure -- possibly by counting up from 
the larger number on his fingers. 

The manifestation of this student's 
simple bug carries over to other types of 
problems which involve addition as a 
subskill. What answer would he give for 
the following? 

A family has traveled 2975 miles on a tour 
of the U.S. They have 1828 miles to go. 
How many miles will they have traveled at 
the end of their tour? 

He correctly solved the word problem to 
obtain the addition problem 2975 + 1875 to 
which he answered 3191. Since his work 
was done on a scratch sheet, the teacher 
only saw the answer which is, of course, 
wrong. As a result, the teacher assumed 
that he had trouble with word problems as 
well as arithmetic. 

When we studied this same student's 
work in other arithmetic procedures, we 
discovered a recurrence of the same bug. 
Here is a sample of his work in 
multiplication: 

68 734 543 
x46 x~7 x206 
--~ 792 

758 2764 
,,,x5~, 
2731 

There are really several bugs manifested 
here; the most severe one being that his 
multiplication algorithm mimics his 
addition algorithm. But notice that the 
bug in his addition algorithm above is 
also present in his multiplication 
procedure. The "carry unit" subprocedure 
bug shows up in both his multiplication 
and addition. For example, to do 68x46, 
in the first column he performs 8x6, gets 
48 and then writes down the "carry" which 
in this case is 4, ignoring the units 
digit. Then he multiplies 6x4 to get 2 
for the second column. All along he has a 
complete and consistent procedure for 
doing arithmetic. His answers throughout 
all of his arithmetic work are far from 
random. In fact they display near 
perfection with respect to his way of 
doing it. 

3. A First Approximation to .Re prese.nting 
Pro.c~d.ura~ Skills 

In order to build a computer system 
capable of diagnosing aberrant behavior 
such as the above, the skill being taught 
must be represented in a form amenable to 
modelling incorrect as well as correct 
procedures. Additionally, the model 
should break the skill down into shared 
sub-skills in order to account for the 
recurrence of similar errors in different 
skills. We use the term diagnostic model 
to mean a representation that depicts a 
student's internalization of a skill as a 
variant of a correct version of the skill. 
For a representation of a correct skill to 
be useful as a basis for a diagnostic 
model, it must make explicit much of the 
tacit knowledge underlying the skill. In 
particular, it must contain all of the 
knowledge that can possibly be 
misunderstood by a student performing the 
skill or else some student misconceptions ~hm 
will be beyond the diagnostic modelling 
capabilities of the system. For example, 
if the model of addition doesn't include 
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the transcription of the problem, the 
system would never be able to diagnose a 
student whose bug was to write 9's which 
he later misread as 7's. 

The technique we use to represent 
diagnostic models is a pcocedural 
network.(3) A procedural network consists 
of a collection of procedures (with 
annotations) in which the calling 
relationships between procedures are made 
explicit by appropriate links in the 
network. Each procedure node has two main 
parts: a conceptual part representing the 
intent of the procedure, and an 
operational part consisting of methods for 
carrying out that intent. The methods 
(also called implementations) are programs 
that define how the results of other 
procedures are combined to satisfy the 
intent of a particular procedure.(4) Any 
procedure can have more than one 
implementation which provides a way to 
model ~ifferent methods for performing the 
same procedure (skill). For most skills, 
the network representation takes the form 
of a lattice. Figure I presents an 
example of the partial breakdown of a part 
of the addition process into a procedural 
network. Conceptual procedures are 
enclosed in ellipses. The top procedure 
in the lattice is addition.(5) Two of the 
possible algorithms for doing addition are 
presented as alternative methods. In 
method I, (the standard algorithm) the 
columns are added from right to left with 
any carries being written above (and 

(3) This term has been used by Earl 
Sacerdoti [1975] to describe an 
interesting modelling technique for a 
partially ordered sequence of annotated 
steps in a problem solving "plan". Our 
use of procedural nets differs from and is 
less developed than his. 
(4) The language we have used is LISP. 
The particular programming language is 
unimportant from a theoretical standpoint 
because an implementation is 
non-introspectable. The modelling aspects 
of the network must occur at the 
conceptual procedure level. For example, 
the implementation of the subtraction 
facts table look up procedure in the 
computer is necessarily different from 
that in the student. However, the 
conceptual properties of the facts table 
procedure are the same in both. Those 
aspects which are the same (e.g., the 
invoking of other procedures, the values 
returned, the relevant side effects) are 
included in the network, while the 
implementation details which may differ 
are "swept under the rug" into the 
program. This is not a limitation, as any 
"implementational issue" can be elevated 
to the conceptual level by creating a new 
conceptual procedure in between the 
existing ones. The distinction between 
conceptual and implementation details also 
allows skills to be modelled efficiently 
at different levels. 
(5) This is a simplified representation 
intended only to demonstrate those 
features of the procedural network 
particularly relevant to the diagnostic 
task. The actual breakdown into 
subprocedures may be different in a 
particular network and will be 
considerably more detailed. 

included in the column sum of) the next 
column to the left. In method 2, the 
columns are added from left to right with 
any carries being written below the answer 
in the next column to the left. If there 
are any carries, they must be added in a 
second addition. Notice that these two 
methods share the common procedures for 
calculating a column sum and writing a 
digit in the answer, but differ in the 
procedure they use when carrying is 
necessary. One structural aspect of the 
network is to make explicit any 
subprocedures that can be potentially 
shared by several higher level procedures. 

FIGURE i 
A Simplified Piece of a 

Procedural Network for Addition 

The decomposition of a complex skill 
into all of its conceptual procedures 
terminates in some set of primitives that 
reflect assumed elements of an underlying 
computational model. For addition, 
typical primitives are recognizing a 
digit; being able to write a digit; and 
knowing the concepts of right, left, etc. 
The complete procedure network (explicitly 
specifying all the subprocedures of a 
skill) can be evaluated or "executed", 
thereby simulating the skill for any 
given set of inputs. By itself, this 
merely provides a computational machine 
which performs the skill and is not of 
particular import. However, the possible 
"misconceptions" of this skill are 
represented in the network by "buggy" 
implementations associated with procedures 
in the decomposition. Each buggy version 
contains incorrect actions taken in place 
of the correct ones. An extension to the 
network evaluator enables the switching in 
of a bu~v version of a procedure thereby 
allowing the network to simulate the 
behavior of that buggy subskill. This 
provides a computational method for 
determining the external behavior of the 
underlying bugs. 

4. Inferring a Diagnostic Model of the 
Student 

The problem of diagnosing a deep 
structure failure in a student's knowledge 
of a procedural skill can now be 
~ccomplished, at least theoretically, in a 
straightforward manner. Suppose, as in 
the examples on page 3, we are provided 
with several surface manifestations of a 
deep structure misconception or bug in the 
student's addition procedure. To uncover 
which possible subprocedures are at 
fault, we use the network to simulate the 
behavior of buggy subproeedures over the 
set of problems and note those which 
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generate the same behavior as exhibited by 
the student. To catch a student's 
misconceptions that involve more than one 
faulty subprocedure, we must be able to 
simulate various combinations of bugs.(6) 
For example, a student may have a bug in 
his carrying procedure as well as 
believing that 8+7 is 17 (a bug in his 
addition facts table). To model his 
behavior, both buggy versions must be used 
together. A deep structure .model of the 
student's errors is set of buggy 
subprocedures which when invoked, 
replicate those errors. Each buggy 
version has associated information such as 
the underlying teleology of the bug, 
specific remediations, explanations, 
examples and so on. These may be used by 
a tutoring system to help correct the 
student's problem.(7) 

5. Relationship of Diagnostic Models tq 
Other Kinds of Structural Mod.e&&. 

It is beyond the scope of this paper 
to discuss all the past and current work 
on structural models of students and how 
it relates to diagnostic models based on 
procedural networks. However, a few words 
are in order. Most of the past and 
current research on this subject has been 
focussed on the intuitively appealing 
notion that if one has an explicit, well 
formulated model of the knowledge base of 
an expert (for a given set of skills or 
problem domain) then one can model a 
particular student's knowledge as a 
contraction or simplification of the rules 
comprising the expert [Brown and Burton 
1974, Collins, Warnock and Passafiume 
1975, Burton and Brown 1976, Carr and 
Goldstein 1977]. Recently, Goldstein has 
expanded this concept in his Computer 
Coach research and has coined the term 
"overlay model" for capturing how a 
student's manifested knowledge of skills 
(rules) relates to an expert's knowledge 
base [Goldstein 1977]. 

The work reported in this paper 
differs in emphasis from such approaches 
in that the basic modelling technique 
focuses on viewing a structural model of 
the student not primarily as a 
simplification of the expert's rules but 
rather as a set of semantically meaningful 
deviations from an expert's knowledge 
base.(8) That is, each subskill of the 

(6) Additional structure in the network 
helps resolve what combination of bugs are 
worth considering. In general simulating 
or evaluating all simple and multiple bugs 
takes approximately 2 cpu seconds for the 
addition and subtraction procedural nets. 
(7) West [1971] has broken down the 
diagnostic teaching task into four steps: 
i) distinguish between conceptual and 
careless errors; ii) identify the exact 
nature of the conceptual error (bug); iii) 
determine the conceptual basis (cause) of 
the bug; and iv) perform the appropriate 
remediation. The system we describe has 
been directed towards problems (i) and 
(ii). The buggy implementation nodes in 
the network provide the proper places to 
attach information relevant to problems 
(iii) and (iv). 
(8) Because these deviations are based on 
both the student's intended goals and 
underlying teleology of the subskills, we 

expert is explicitly encoded, along with a 
set of potential misconceptions of that 
subskill. The task of inferring a 
diagnostic model then becomes one of 
discovering which set of variations or 
deviations best explains the surface 
behavior of the student. This view is in 
concert with (although more structured 
than) the approach taken by Self [1974] in 
which he models the student as a set of 
modified procedures taken from a 
procedural expert problem-solver. 

6. BUGGY - An Instructional Game for 
Trai~ing Student Teachers (.and Others) 

As we saw in the first section, it is 
often difficult to induce a student's bug 
from his answers. The need for teachers 
to thoroughly appreciate and strategically 
cope with the possible range of student 
bugs led us to construct a game called 
BUGGY. BUGGY is a computerized game based 
on the diagnostic interactions of a tutor 
and a student. The computer portraits an 
errantstudent whose malady must be 
identified by the teacher/diagnostician (a 
role played by an individual or a team). 
The diagnostician is presented with an 
arithmetic homework problem that the 
"student" has done incorrectly. The 
"student's" behavior is generated using a 
procedural network and manifests an 
underlying bug in one of the arithmetic 
subprocedures. The diagnostician's job is 
to discover exactly what the underlying 
misconception is by providing strategic 
test problems for the "student" to solve. 
The problems given by the diagnostician 
are answered by the "student" using the 
bugged procedure. When the diagnostician 
indicates that he knows the bug, he is 
first asked to describe the bug then, to 
make certain that he really has found the 
bug, he is given a five-problem test. 
During the test the diagnostician must 
answer the problems in the same errant way 
that the student would do them, i.e. he 
must simulate the "student's" bug. When 
the diagnostician's concept of the bug is 
well formulated enough to predict the 
buggy answer on all five problems, he is 
considered to have diagnosed the student 
and he proceeds to a new bug. 

We have found it beneficial to allow 
teachers to team np while playing the 
diagnostician's role in BUGGY. The 
interaction between team members 
encourages verbalization of the 
decision-making processes involved in the 
game. The following is a protocol of a 
team of teachers using BUGGY. The 
dialogue is interspersed with commentary 
about the issues that we feel are 
pedagogically important. Those lines 
typed by the team are marked with a 
vertical line in the left margin. 

have no automatic way to generate them (as 
opposed to what could be done if the 
deviations were based on the surface 
syntax of the rules). However, ongoing 
work by Goldstein and Miller [1976], Rich 
and Schrobe [1976] and Burton and Brown 
[forthcoming] will eventually help 
overcome this limitation. 
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7. Protocol of a Team Using BUGGY 

WELCOME TO BUGLAND. 
I HAVE CHOSEN A BUG. HERE IS AN EXAMPLE 
OF THE BUG. 

117 
13 

The  s y s t e m  p r e s e n t s  an  e x a m p l e  i n  
w h i c h  t h e  s t u d e n t  d o e s n ' t  g e t  t h e  
r i g h t  a n s w e r .  At  p r e s e n t  t h e s e  
initial examples are stored in the 
network linked to the buggy 
implementation. 

NOW YOU CAN GIVE ME PROBLEMS TO DETERMINE 
THE BUG. 

18 43 
+6 +79 
15 23 

The team generates problems that are 
answered by the "student" Notice 
that the team's test problems are 
similar to the initial example 
generated by BUGGY. In general this 
is a poor diagnostic strategy as it 
may leave other symptoms of a bug 
undiscovered. 

IGor the bug! 

The team forms an initial hypothesis 
and tells the system they have 
discovered the bug. The system now 
asks the team to describe the bug and 
then tests them on their 
understanding. Asking for a 
description forces the team to 
verbalize their sometimes fuzzy idea 
of what the bug is and often makes 
them realize how ill-defined or vague 
their idea actually is.(9) 

PLEASE DESCRIBE THE BUG YOU THINK I HAVE. 

Student adds the number to be carried 
into the last column worked in. 

This cryptic description is typical 
of those we have observed. 
Describing bugs in English is 
surprisingly difficult. What the 
team is trying to say is that if a 
column adds to more than 9, the units 
digit and the carry digit are added 
together and the result is written as 
the answer. For example, in the 
first column of the example problem, 
when 7 and 5 are added, I (the carry) 
and 2 (the units digit) are added to 
get 3. The same with 8+6, 2+9, and 
3+9. (This bug could easily arise if 
the student were using method 2 from 
figure I and mistakenly wrote the 
carry under the same column.) The 
hypothesis does account for the 
observed behavior. Unfortunately, it 

(9) In the present system, the 
descriptions are saved but they are not 
currently used, since the understanding of 
these utterances is beyond the 
capabilities of any existing natural 
language system. 

is not the student's bug. Notice the 
possibly humorous, probably 
disastrous results that would have 
transpired if the team had stopped at 
this point and tried to tutor the 
student on the basis of their initial 
belief! 

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY 
ABOUT THE BUG. 
WHAT IS: 

To ensure that the team has found the 
correct bug, the system generates 
several problems for the team to 
solve. (At present, BUGGY has a 
heuristic problem generation program 
that gives a broad range of 
"different" problems. These are then 
filtered to try to get three problems 
which cause symptoms and two that 
give correct answers. This simple 
routine does surprisingly well at 
producing critical problems. So 
well, in fact, that a more 
"intelligent" routine which 
determined the consistent set of bugs 
and then filtered the test problems 
to split the set was discarded as 
unnecessarily time-consuming.) 

21 
+39 

1 5 1  

The team's hypothesis is revealed as 
incorrect by the first of the five 
test problems. BUGGY presents its 
answer and then allows the team to 
enter more test problems. 

THAT'S NOT THE BUG I HAVE. 
USING MY BUG: 

21 
+39 
15 

TRY GIVING ME SOME MORE EXAMPLES. 

I 51 99 68 
+1707 

After failing the test, the team 
gives a greater range of problems, 
specifically those using bigger 
numbers. How is it that 51+1707 can 
add up to 21? By broadening the 
scope of example problems they are 
able to reevaluate their initial 
hypothesis, dismiss it, and develop 
another one that is complete and 
consistent with respect to the new 
errors. 

IGor the bug! 

PLEASE DESCRIBE THE BUG YOU THINK I HAVE. 

The student is adding all the digits 
together. 



HERE ARE SOME PROBLEMS TO TEST YOUR THEORY 
ABOUT THE BUG. 
WHAT IS: 

33 1091 8 28 90 
+60 ~ +70 +__.6_6 

I ~ 17 15 17 15 

This time the team's hypothesis 
passes the test and they are given 
the description of the bug stored in 
the procedural network. 

VERY GOOD. MY DESCRIPTION OF THE BUG IS: 
THE STUDENT ALWAYS SUMS UP ALL THE DIGITS 
WITH NO REGARD TO COLUMNS. 

8. Pedagogical Issues for Teachers 
One application of BUGGY and the 

"diagnostic model" view of procedural 
skills is in the domain of teacher 
training. The realization that "random" 
errors are actually the surface 
manifestations of an underlying bug in a 
procedure is a major conceptual 
breakthrough for many student teachers. 
Often behavior that appears to be random, 
has a simple, intelligent, and complete 
underlying explanation. By proper 
diagnosis, remediation can be directed 
towards the specific weaknesses. The 
importance of this notion cannot be 
overstressed. Admitting the possibility 
of underlying bugs is critical to 
remediation in the classroom. Without the 
ability to diagnose procedural bugs, 
failure on a particular problem must be 
viewed as either carelessness or total 
algorithm failure. In the first case, the 
remediation consists of giving more 

problems, while in the second, it consists 
of going over the entire algorithm.(10) 
When a student's bug (which may only 
manifest itself occasionally) is not 
recognized by the teacher, the errant 
behavior must be explained as 
carelessness, laziness or worse. This 
causes the teacher to adapt her model of 
the student's capabilities, thereby 
mistakenly lowering her expectations. 
From the student's viewpoint, the 
situation is worse. He is following what 
he believes to be the correct algorithm 
and, seemingly at random, gets marked 
wrong. This situation can be exacerbated 
by improper diagnosis. For example, 
Johnnie subtracts 284 from 437 and gets 
253 as an answer. Of course, says the 
teacher "you forgot to subtract 1 from 4 
in the hundreds place when you borrowed." 
Unfortunately Johnnie's algorithm is to 
subtract the smaller digit in each column 
from the larger. Johnnie doesn't have any 
idea what the teacher is talking about (he 
never "borrowed"!) and feels that he must 
be very stupid indeed not to understand. 
The teacher agrees with this assessment 
as none of her remediation has had any 
effect on Johnnie's performance. 

BUGGY, in its present form, presents 
teachers with examples of buggy behavior 

(10) In computer programming metaphors, 
this corresponds to the debugging 
activities of resubmitting the program 
because the computer must have made a 
mistake and of throwing the whole program 
away and starting over from scratch. 

and provides practice in diagnosing the 
underlying causes of errors. Using BUGGY, 
the teacher gains experience in forming 
theories about the relationship between 
the symptoms of a bug and the underlying 
bug itself. This experience can also be 
cultivated to make teachers aware that 
there are methods or strategies that they 
can use to properly diagnose bugs. There 
are a number of strategy bugs that 
teachers may have in forming hypotheses 
about a student's misconceptions. The 
development of a good "troubleshooting" 
strategy by a teacher can avoid these 
pitfalls. A common mistake is to jump too 
quickly to one hypothesis. Prematurely 
focussing on one hypothesis can cause a 
teacher to be unaware that there are many 
competing hypotheses that are possibly 
more likely. A common psychological 
effect of this is that the teacher only 
generates problems for the student that 
confirm her hypothesis! 

In some cases, a teacher may believe 
her hypothesis so strongly that she will 
ignore disconflrmations that exist or 
decide that these disconfirmations are 
merely random noise.(11) One way this can 
be avoided is by the technique of 
differential diagnosis [Rubin 1975] in 
which one always generates at least two 
hypotheses and then chooses test problems 
that separate them. 

Another important issue concerns the 
relationship between the language used to 
describe a student's errors and its 
effect on what a teacher should do to 
remediate it. Is the language able to 
convey to the student what he is doing 
wrong? Should we expect teachers to be 
able to use language as the tool for 
correcting the buggy algorithms of 
students? Or should we only expect 
teachers to be able to understand what the 
bug is and attempt remediation the student 
with things like manipulative math tools? 
The following are quotes of student 
teacher hypotheses taken from protocols of 
BUGGY which give a good idea of how 
difficult it is to express procedural 
ideas in English. The descriptions in 
parentheses are BUGGY's (prestored) 
explanations of the bugs. 

"Random errors in carryover." (Carries 
only when the next column in the top 
number is blank.) 

"If there are less digits on the top than 
on the bottom she adds columns 
diagonally." (When the top number has 
fewer digits than the bottom number, the 
numbers are left-Justified and then 
added.) 

"Does not like zero in the bottom." (Zero 
subtracted from any number is zero.) 

"Child adds first two numbers correctly 
then when you need to carry in the second 
set of digits child adds numbers carried 
to bottom row then adds third set of 
digits diagonally finally carrying over 
extra digits." (The carry is written in 
the top number to the left of the column 

(11) There is, of course, some amount of 
"processor failure" as kids are often all 
too human. 
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being carried from and is mistaken for 
another digit in the top number.) 

"Sum and carry all columns correctly until 
get to last column. Then takes furthest 
left digit in both columns and adds with 
digit of last carried amount. This is in 
the sum." (When there are an unequal 
number of digits in the two numbers, the 
columns that have a blank are filled with 
the left-most digit of that number.) 

What does this say to us? Even when 
one knows what the bug is in terms of 
being able to mimic it, how is one going 
to explain it to the student having 
problems? Considering the above examples, 
it is clear that anyone asked to solve a 
set of problems using these explanations 
would no doubt have real trouble. One can 
imagine a student's frustration when the 
teacher offers an explanation of why he is 
getting problems marked wrong, and the 
explanation is as confused and unclear as 
these are. For that matter, when the 
correct procedure is described for the 
first time, could it too be coming across 
so unclearly? 

This issue is further complicated by 
the existence of another important issue: 
there are fundamentally different bugs 
which cause identical behavior! In other 
words, there can be several distinct bugs 
that are logically equivalent and always 
generate the same "answers". For example, 
here is a set of problems: 

38 186 298 89 
+46 +254 +16q ~64 
174 2330 2357 243 

The underlying flaw in the student's 
procedure (his bug) can be described as 
"The columns are added without carries and 
the left-most digit in the answer is the 
total number of carries required in the 
problem." In this case, the student views 
the carries as tallies to be counted and 
added to the left of the answer. But 
another equally plausible bug also exists; 
the student is placing the carry to the 
left of the next digit in the top number 
instead of adding it to the digit (i.e. he 
is actually carrying ten times the carry 
digit). This generates the same symptoms. 
So even when the teacher is able to 
describe clearly what she believes is the 
underlying bug, he may be addressing the 
wrong one. The student may actually have 
either one of these bugs!(12) 

9. Pedagogical Issues More Specific to 
Students 

We feel that all of the issues 
discussed above are as important for 
school-level students as they are for 
teachers. There is great value in 
introducing students to procedural 
notions. The BUGGY system provides a well 
controlled environment for such an 
introduction, as well as one that can be 
meaningfully related to standard 
curricula. The diagnostic task of a 

player requires studying the procedural 
skill per se as opposed to merely 
performing it. This can be especially 
important as students begin algebra, which 
is their first exposure to "parameterized" 
procedures. 

Additionally, BUGGY can be used to 
explore the powerful ideas of hypothesis 
formation, debugging, debugging 
strategies, and so on. To further 
encourage thought along these lines, the 
BUGGY environment can be adapted to 
provide students with a specialized 
language for writing procedures. (Note 
that such an environment could provide 
immediate focussing on debugging 
strategies -- a topic usually left until 
the end in most secondary school 
programming courses.) In this environment 
it appears to be possible to construct a 
very intelligent debugging agent or 
programming assistant as well as a 
computer-based tutorial helper that can 
aid a student when he gets stuck. This 
kind of programming assistant has been 
impossible to provide for the open worlds 
usually encountered in the environments 
of general-purpose programming languages. 
Having students write their own procedures 
also allows use of a game developed in the 
SOPHIE environment [Brown, Rubinstein and 
Burton 1976] where one student writes a 
procedure introducing a bug and another 
student tries to discover it by presenting 
test problems. 

Another reason for having students 
develop a language for talking about 
procedures, processes, bugs, etc. is that 
this language enables the student to talk 
about (and think about) procedures and the 
underlying causes of his own errors. This 
is important in its own right, but it also 
gives a student the motivation and the 
apparatus for stepping back and critiquing 
his own thinking, as well as saying 
something interesting and useful about his 
errors. This is especially important 
given the fact that there's been so little 
success in getting students to look over 
their own work (such as estimating 
answers) and to use this perusal to good 
advantage. 

An important side effect of a 
student's involvement with BUGGY is 
exposure to the idea of role reversal.(13) 
In order to communicate effectively with 
others, children must learn not only the 
language itself, but the use of "social 
speech": speech that takes into account 
the knowledge and perspective of another 
person [Krauss and Glucksberg 1977]. 
Piaget uses the term "childhood 
egocentrism" to describe the child's 
inability to detach himself from his own 
point of view and take into consideration 
another's perspective. Although Krauss 
and Glucksberg agree that egocentrism 
plays a large part in very young 
children's speech, they believe that in 
older children the ability to role play 
only breaks down when they are faced with 
a demanding cognitive task. We believe 
that taking on the viewpoint of the 
errant student by analyzing another's 

(12) This leads to an interesting question 
concerning how one can "prove" two 
different descriptions of bugs entail 
logically the same surface manifestations. 

(13) This idea is due to Tim Barclay at 
the Cambridge Friends School who has been 
experimenting with various uses of Buggy 
with sixth through eighth graders. 
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mistakes can be a demanding one and that 
this kind of exercise can be beneficial to 
the development of "social speech". 

10. Where From Here? 
Most of what the students learned 

while using BUGGY they learned or 
discovered, in some sense, on their own. 
BUGGY does no explicit tutoring. It 
simply challenges their theories and 
encourages them to articulate their 
thoughts.(14) The rest of the learning 
experience occurred either through the 
sociology of team learning or from what a 
person abstracted on his own. The next 
step in improving the educational 
effectiveness of BUGGY is (i) to implement 
an intelligent tutor to critique the 
example test problems the students create, 
(ii) to point out interesting facets of 
their debugging strategies and (iii) to 
isolate manifested weaknesses in their 
strategies. Our experiences indicate that 
such a tutor would be very helpful for 
middle school and remedial students where 
it could keep students from getting 
caught in unproductive ruts and could help 
focus their attention on the structure of 
the procedures themselves. 

Along these same lines the "expert" 
portion of the procedural net should be 
made "articulate" in the sense of being 
able to explain and justify the 
subprocedures it uses. This would allow a 
student to pose a problem to the system 
and obtain a running account of the 
relevant procedures as the "expert" solves 
the problem. A useful notion may be to 
have additional explanation or 
justification of each symbolic procedure 
(in the network) expressed in terms of a 
"physical" procedure using manipulative 
tools (such as Dienes' blocks). In this 
way, the execution of each symbolic 
procedure could cause its analogous 
physical procedure to be displayed on a 
graphics device, thereby letting the 
student see the numeric or abstract 
computation unfold in conjunction with a 
physical model of the computation. This 
directly attacks the problem of getting 
procedures to take on "meaning" for a 
student which, we believe, is accomplished 
by recognizing mappings or relations 
between the new procedures and existing 
procedures or experiences (reality). 

Another area for extension concerns 
the psychological validity of the skill 
decomposition (and buggy variants) in the 
procedural network. Determining the 
proper functional breakdown of a skill 
into its subskills is critical to the 
psychological validity of the model and 
the resulting behavior of the system. If 
the breakdown of the skill is not correct, 
bugs that people would consider simple may 
be difficult to model while those 
suggested by the model may be judged by 
people to be "unrealistic". From the 
network designer's point of view this 

(14) As a historical footnote, BUGGY was 
originally developed to explore the 
psychological validity of the procedural 
network model for complex procedural 
skills. During that investigation we 
realized the pedagogical potential of even 
this simple version of BUGGY as an 
instructional medium. 

leads to the issue of choosing or 
constructing one structural decomposition 
instead of another. We are just beginning 
to acquire a large data base of arithmetic 
errors from Institute for Mathematical 
Studies in the Social Sciences at Stanford 
[Searle, B. et al. 1976] and will be 
testing to see how well our diagnostic 
model accounts for all of them. In 
particular, we are concerned not only with 
how many underlying bugs our current model 
captures, but also how many bugs our 
network predicts that never show up. A 
more subtle issue concerns the validity of 
the actual functional decomposition of the 
skills in the network. Measuring the 
"correctness" of a particular network is a 
problematic issue as there are no clear 
tests of validity, but issues such as the 
ease or "naturalness" of inclusion of 
newly discovered bugs and the appearance 
of combinations of bugs within a breakdown 
can be investigated. 

We are also in need of a theory of 
what makes an underlying bug easy or 
difficult to diagnose. Simple conjectures 
concerning the depth of the bug from the 
surface don't seem to work, but more 
sophisticated measures might. It's hard 
to see how to predict the degree of 
difficulty in diagnosing a particular bug 
without a precise information processing 
or cognitive theory of how people actually 
formulate conjectures about the underlying 
bug or cause of an error. 

Finally, we note that we have left 
open the entire issue of a semantic or 
teleological theory of how bugs are 
generated in the first place. The need 
for such a theory is important for at 
least two reasons. First it could provide 
an interesting theoretical mechanism that 
would account for the entire collection of 
empirically arrived at bugs, and second, 
it provides the next step in a 
semantically based productive theory of 
student modelling. 
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