
mGNlTlvE SCIENCE. 2, 155-192 (1978)

Diagnostic Models for Procedural Bugs in
Basic Mathematical Skills*

JOHN SEELY BROWN AND RICHARD R. BURTON

Bolt Beranek and Newman

A new diagnostic modeling system for automatically synthesizing a deep-structure model
of a student's misconceptions or bugs in his basic mathematical skills provides a mechanism
for explaining why a student is making a mistake as opposed to simply identifying the
mistake. This report is divided into four sections: The first provides examples of the
problems that must be handled by a diagnostic model. It then introduces procedural net
works as a general framework for representing the knowledge underlying a skill. The
challenge in designing this representation is to find one that facilitates the discovery of
misconceptions or bugs existing in a particular student's encoding of this knowledge. The
second section discusses some of the pedagogical issues that have emerged from the use of
diagnostic models within an instructional system. This discussion is framed in the context of
a computer-baserl tutoring/gaming system developed to teach students and student teachers
how to diagnose bugs strategically as well as how to provide a better understanding of the
underlying structure of arithmetic skills. The third section describes our uses of an executa
ble network as a tool for automatically diagnosing student behavior, for automatically
generating "diagnostic" tests, and for judging the diagnostic quality of a given exam.
Included in this section is a discussion of the success of this system in diagnosing 1300
school students from a data base of 20,000 test items. The last sec!ion discusses future
research directions.

If you can both listen to children and accept
their answers not as things to just be judged right
or wrong but as pieces of information which may
reveal what the child is thinking you will have
taken a giant step toward becoming a master
teacher rather than merely a disseminator of in
formation.

J. A. EASLEY, JR. & R. E. ZWOYER (1975)

INTRODUCTION

One of the greatest talents of teachers is their ability to synthesize an accurate
"picture," or model, of a student's misconceptions from the meager evidence

*This paper is a substantially expanded version of a paper written with Kathy M. Larkin entitled
"Representing and Using Procedural Bugs for Educational Purposes," which appears in Proceedings
of the ACM, National Conference, ACM 77. October 1977.

Development of the general framework of Diagnostic Models which underlies this research was
supported, in part. by the Advanced Research Projects Agency, Air Force Human Resources
Laboratory, Army Research Institute for Behavioral and Social Sciences, and Navy Personnel Re
search and Development Center under Contract No. MDA903-76-C-0108.

Requests for reprints should be addressed to Richard R. Burton, Bolt Beranek and Newman Inc.,
50 Moulton Street. Cambridge, Mass. 02138.

155

156 BROWN AND BURTON

inherent in his errors. A detailed model of a student's knowledge, including his
misconceptions, is a prerequisite to successful remediation. The structure, use,
and inference of such models for procedural skills in mathematics is the topic of
this paper. In particular we shall describe some initial efforts in the development
and use of a representational technique called "procedural networks" as the
framework for constructing diagnostic models-Le., models that capture a stu
dent's common misconceptions or faulty behavior as simple changes to (or
mistakes in) a correct model of the underlying knowledge base. By being able to
synthesize such deep-structure diagnostic models automatically, we can provide
both a teacher and an instructional system with not only an identification of what
mistakes a student is making, but also an explanation of why those mistakes are
bei~g made. Such a system also has profound implications for testing, since a
student need no longer be evaluated solely on the number of errors appearing on
his test, but rather on the fundamental misconceptions which he harbors.

This paper consists of four sections. The first provides examples of the prob
lems that must be handled by a diagnostic model. It then introduces procedural
networks as a general framework for representing the knowledge underlying a
skill. The challenge here is to design a representation that facilitates the discov
ery of misconceptions or bugs existing in a particular student's encoding of this
knowledge. The second section discusses some of the pedagogical issues that
have emerged from our use of diagnostic models within an instructional system.
This system is a computer-based tutoring game developed to teach both students
and student teachers about the strategic diagnosis of bugs. The third section
describes our uses of procedural network as a tool for automatically diagnosing
student behavior, for automatically generating "diagnostic" tests, and for judg
ing the diagnostic quality of a given exam. Included in this section is a discussion
of the success of this system in diagnosing 1300 grade-school students from a
data base of 20,000 test items. The last section discusses some future research
directions.

I. DIAGNOSTIC MODELS OF BASIC SKILLS

The issues addressed in this paper arose from an investigation of the pro
cedural skills necessary to solve high school algebra problems. These skills
include not only the generally recognized rules of algebra, but also such normally
implicit skills as the reading of formulas, the parsing of expressions, and the
determination of which rules to apply next (Brown & Burton, 1975; Brown,
Collins, & Harris, 1978; Matz, 1978). For this paper, however, we limit our
discussion to examples encompassing arithmetic skills so that we can concentrate
on the critical ideas of diagnosis without the need for a large number of algebraic .
rules. Limiting our examples to arithmetic also provides a compelling demonstra
tion of the difficulty of the diagnostic task; it clearly demonstrates how much
more difficult it is to diagnose what is wrong with a student's method of perform-

DIAGNOSTIC MODELS 157

ing a task-to form a diagnostic model-than it is to perform the task itself. In
particular, it is no great challenge to add or subtract two numbers, but, as we
shall see, diagnosing misconceptions in these same skills can be quite subtle.

Let us consider diagnosing what is wrong with the arithmetic skills (proce
dures) of a couple of students. We shall start with a case study in which we
examine five "snapshots" of a student's performance doing addition as might be
seen on a homework assignment. Before proceeding, look at the following snap
shots and try to discover the studenf s bug.

Sample of the studenf s work:

41
+9
50

328
+917
1345

989
+52
1141

66
+887
1053

216
+13
229

Once you have discovered the bug, try testing your hypothesis by "simulating"
the buggy student so as to predict his results on the following two test prob
lems.

446 201
+815 +399

The bug is really quite simple. In computer terms, the student, after determin
ing the carry, forgets to reset the "carry register" to zero and hence the amount
carried is accumulated across the columns. For example, in the studenfs second
problem (328 + 917 equals 1345) he proceeds as follows: 8 + 7 = 15 so he writes
5 and carries 1; 2 + 1 = 3 plus the 1 carry is 4; lastly, 3 +9 = 12 but that 1 carry
from the first column is still there-it has not been reset-so adding it in to this
column gives 13. If this is the bug, then the answers to the test problems will be
1361 and 700. This bug is not so absurd when one considers that a child might
use his fingers to remember the carry and forget to bend back his fingers, or
counters, after each carry is added.

A common assumption among teachers is that students do not follow proce
dures very well and that erratic behavior is the primary cause of a studenf s
inability to perform each step correctly. Our experience has been that students are
remarkably competent procedure followers, but that they often follow the wrong
procedures. One case encountered last year is of special interest. The student
proceeded through a good portion of the school year with his teacher thinking
that he was exhibiting random behavior in his arithmetic performance. As far as
the teacher was concerned there was no systematic explanation for his errors.
Here is a sample of his work:

7
+8
15

9
+5
14

8
+3
II

6
+7
13

8
+8
T6

9
+9
18

17
+8
25

19
+4
23

87
+93

11

158

365
+574

819

BROWN AND BURTON

679
+794

III

923
+481

114

27,493
+ 1,509
28,991

791
+48,632

48,119

There is a clue to the nature of his bug in the number of ones in his answers.
Every time the addition of a column involves a carry, a I mysteriously appears in
that column; he is simply writing down the carry digit and forgetting about the
units digit! One might be misled by 17 +8 which normally involves a carry yet is
added correctly. It would seem that he is able to do simple additions by a
completely different procedure-possibly by counting up from the larger number
on his fingers.

The manifestation of this student's simple bug carries over to other types of
problems which involve addition as a subskill. What answer would he give for
the following?

A family ha~ traveled 2975 miles on a tour of the U.S. They have 1828 miles to go. How
many miles will they have traveled at the end of their tour?

He correctly solved the word problem to obtain the addition problem 2975 +
1875, to which he answered 3191. Since his work was done on a scratch sheet,
the teacher only saw the answer which is, of course, wrong. As a result, the
teacher assumed that he had trouble with word problems as well as with arithme
tic.

When we studied this same student's work in other arithmetic procedures, we
discovered a recurrence of the same bug. Here is a sample of his work in
multiplication:

68
x46

24

734
x37
792

543
x 206

141

758
x296

144

2764
x53

2731

Several bugs are manifested here, the most severe one being that his multiplica
tion algorithm mimics the column behavior of his addition algorithm. But notice
that the bug in his addition algorithm is also present in his multiplication proce
dure. The "determine-unit-and-carry" subprocedure bug shows up in both his
multiplication and addition. For example, to do 68 X46, in the first column he
performs 8 x 6, gets 48 and then writes down the "carry," in this case 4,
ignoring the units digit. Then, he multiplies 6 x4 to get 2 for the second column.
All along he has a complete and consistent proredure for doing arithmetic. His
answers throughout all of his arithmetic work are far from random; in fact, they
display near perfection with respect to his way of doing it.

A First Approximation to Representing Procedural Skills

For a computer system to be capable of diagnosing aberrant behavior such as
the above, the procedural skill being taught must be represented in a form
amenable to modeling incorrect as well as correct subprocedures of that skill.
Furthermore, the representation must allow the intermixing of both the correct

DIAGNOSTIC MODELS 159

and incorrect subskills, 5,9 that the model can capture those parts of a skill that are
COiTect as well as those that are wrong. The breakdown of the skill into shared
subskills can also account for the recurrence of similar errors in different skills.
We introduce the term diagnostic model to mean a representation of a student's
procedural knowledge or skill that depicts his internalization of a skill as a variant
of a correct version of that skill.

In addition to satisfactory representational techniques, the diagnostic modeling
task requires that the representation of a particular correct skill make explicit
much of the tacit knowledge underlying the skill. In particular, the correct model
must contain all of the knowledge that can possibly be misunderstood by the
student or else some student misconceptions will be beyond the diagnostic
modeling capabilities of the system. For example, if the model of addition does
not include the transcription of the problem, the system would never be able to
diagnose a student whose bug is to write 9s that he later misreads as 7s.

The technique we use to represent diagnostic models is aprocedural network. 1

A procedural network model for a correct skill consists of a collection of proce
dures with annotations in which the control structure (i.e., calling relationships)
between procedures are made explicit by appropriate links. Each procedure node
has two main parts: a conceptua.l part representing the intent of the procedure,
and an operational part consisting of methods for carrying out that intent. The
methods (also called implementations) are programs that define how the results
of other procedures are combined to satisfy the intent of a particular procedure. 2

Any procedure can have more than one implementation, thus providing a way to
model different methods for performing the same skill. For most skills, the
network representation takes the form of a lattice. Figure 1 presents a partial
breakdown of a portion of the addition process into a procedural network. Con
ceptual procedure nodes are enclosed in ellipses. The top procedure in the lattice
is addition. 3 Two of the possible algorithms for doing addition are presented as

IThis tenn has been used by Earl Sact';rdoti (1977) to describe an interesting modeling technique for
a partially ordered sequence of annotat~d steps in a problem solving "plan" as well as for specifying
control infonnation. Our use of procedural nets coincides with his on this latter feature but differs
from and is less developed than his with regard to "plans."

2The language we have used to define these programs is LISP. The particular programming
language is unimportant from a theoretical standpoint because an implementation is nonintrospecta
ble. The modeling aspects of the network must occur at the conceptual procedure level. For example,
the implementation of the subtraction facts table look-up procedure in the computer is necessarily
different from that in the student. However, the conceptual properties of the two implementations can
be made to agree to an .. appropriate" level of detail. Those aspects which are appropriate f9r our
task-the invoking of other procedures. the values returned, the relevant side effects-are included
in the network, while the implementation details that may differ are "swept under the rug" into the
program. This distinction between conceptual and implementation details also allows skills to be
modeled etficiently at different levels which may be appropriate for different tasks.

3Th is simplified representation demonstrates only those feat\lres of the procedural network particu
larly relevant to the diagnostic task. The actual breakdown into subprocedu~s may be different in a
particular network and will be considerably more detailed.

160 BROWN AND BURTON

ADDITION

METHOD 1 METHOD 2

RIGHT-TO-LEFT LEFT-fO-RIGHT

FIG . I A portion of the procedural network for addition .

alternative methods under the conceptual node for addition. In Method 1, the
standard algorithm, the columns are added from right to left with any carries
being written above and included in the column sum of the next column to the
left. In Method 2, the columns are added from left to right with any carries being
written below the answer in the next column to the left. If any carries occur in the
problem, they must be added in a second addition. Notice that these two methods
share the common procedures for calculating a column sum and writing a digit in
the answer, but differ in the procedure they use when carrying is necessary. One
structural aspect of the network is to make explicit any subprocedures that can be
potentially shared by several higher level procedures.

The decomposition of a complex skill into all of its conceptual procedures
terminates in some set of primitives that reflect assumed elements of an underly
ing computational ability. For addition, typical assumed primitives are recogniz
ing a digit, writing a digit, and knowing the concepts of right, left, etc. The
complete procedure network explicitly specifies all the subprocedures of a skill
and can be evaluated or "executed," thereby simulating the skill for any given
set of inputs. By itself, this network merely provides a computational machine

DIAGNOSTIC MODELS 161

that performs the skill and is not of particular import. However, the possible
misconceptions in this skill are represented in the network by incorrect im
plementations associated with subprocedures in its decomposition called
"bugs".4 Each buggy version contains incorrect actions taken in place of the
correct ones. $ An extension to the network evaluator enables the switching in of a
buggy version of a procedure that allows the network to simulate the behavior of
that buggy subskill. This feature provides a computational method for determin
ing the external behavior of the underlying bugs.

Inferring a Diagnostic Model of the Student

The problem of diagnosing a deep structure failure in a student's knowledge of
a procedural skill can now be accomplished, at least theoretically, in a
straightforward manner. Suppose, as in the examples on page 157, we are pro
vided with several surface manifestations of a deep structure misconception, or
bug, in the student's addition procedure. To uncover those possible subproce
~ures which are at fault, we use the network to simulate the behavior of buggy
subprocedures over the set of problems and note those which generate the same
behavior as exhibited by the student. To catch a student's misconceptions that
involve more than one faulty subprocedure, we must be able to simulate various
combinations of bugs. A student may have a bug in his carrying procedure as
well as be!ieving that 8+7 is 17 (a bug in his addition facts table). To model his
behavior, both buggy versions must be used together. A deep-structure model of

j the student's errors is a set of buggy subprocedures that, when invoked, rep-
I licates those errors. Each buggy version has associated information such as what
! the underlying causes of the bug may have been, as well as specific remediations,
! explanations, interactions, and examples of the bug-all of which may be used
" j by a tutoring system to help correct the student's problem. 6

ij Many technical questions are raised by the above brief overview of how to
i "infer" a diagnostic model. We have deferred a more detailed discussion of
~

:1 these questions until Section 3 in favor of a more general discussion of pedagogi-
cal ramifications of the procedural network model of procedural skills. We begin
this discussion with a description of the procedural network for a simple skill
subtraction.

~The term "bug" is borrowed from computer science where it refers to a mistake in a computer
program.

:'A "buggy" implementation does, in general, call other "correct" subprocedures though they
may be called at inappropriate times or their results used incorrectly.

"West (1971) has broken down the diagnostic teaching task into four steps: (i) distinguish between
conceptual and careless errors; (ii) identify the exact nature of the ' conceptual error (bug); (iii)
determine the conceptual basis (cause) of the bug; and (iv) perform the appropriate remediation. The
system we describe has been directed toward problems (i) and (ii) . The buggy implementation nodes
in the network provide the proper places to attach information relevant to problems (iii) and (iv).

162 BROWN AND BURTON

A Procedural Network for Subtraction

As an example of the surprising amount of procedural knowledge needed to
perform a simple skill, let us consider a more complete network representation of
the subtraction of two numbers.7 Figure 2 shows the links of the procedural
network for subtraction that indicate which subprocedures a procedure may use.

The topmost node (SUBTRACT) represents the subtraction oftwon-digit num
bers. It may use the procedures for setting up the problem (SETUP), transforming
it if the bottom number is greater than the top (TRANSFORM), and sequencing
through each column performing the column subtraction (COLUMN SE
QUENCE). The implementation of the column subtraction procedure has to
account for cases where borrowing is necessary (BORROW NEEDED) and may
call upon many other subprocedures, including taking the borrow from the cor
rect place (DO BORROW), scratching 0 and writing 9 if that place contains a
zero (ZERO), and so on. An important subprocedure is the facts table look-up
(FACTS TABLE) which allows any of the simple arithmetic facts to be wrong.
The facts table subprocedure is called during the addition of 10 to a column digit

FIG . 2 A procedural network for subtraction.

'We have chosen just one of the several subtraction algorithms (the so-called "standard" al
gorithm). but the ideas presented here apply equally to others and can handle multiple methods as
well .

DIAGNOSTIC MODELS 163

143 The student subtracts the smaller digit in each column from the larger digit regardless of
-28 which is on top.
125

143 When the student needs to borrow, he adds 10 to the top digit of the current column with-
-28 out subtracting 1 from the next column to the left.
125

1300 When borrowing from a column whose top digit is 0, the student writes 9 but does not
-522 continue borrowing from the column to the left of the O.

878

140 Whenever the top digit in a column is 0, the student writes the bottom digit in the answer;
-21 i.e.,O-N=N.
12!

140 Whenever the top digit in a column is 0, the student writes 0 in the answer; i.e. O-N=O.
-21
120

1300
-522

788

321
-89
231

662
-357

205

662
-357

115

When borrowing from a column where the top digit is 0, the student borrows from the
next column to the left correctly but writes 10 instead of 9 in this column.

When borrowing into a column whose top digit is I, the student gets 10 instead of 11.

Once the student needs to borrow from a column, s/he continues to borrow frolilil..every
column whether s/he needs to or not.

The student always subtracts all borrows from the leftmost digit in the top number.

FIG. 3 Manifestations of some subtraction bugs.

(ADD 10), during the subtraction of 1 from a column digit in a borrowing opera
tion (SUBTRACT I), as well as during the subtraction of the bottom from the
top digit in a column (COMPLETE COLUMN).

In principle, each of these subprocedures could have many buggy versions
associated with it. 8 An example of a common bug is to calculate the column
difference by subtracting the smaller digit from the larger regardless of which is
on top. In another bug, the SETUP procedure left justifies the top and bottom
numbers so that when the student is told to subtract 13 from 185, he gets 55. An

"In our current subtraction network, some subprocedures have only one buggy version, while
others have as many as fifteen. The average is three or four.

I

164 BROWN AND BURTON

interesting aspect of the left justification bug is that when the student is faced
with seemingly impossible problems (185-75) he may be inclined to change the
direction in which he subtracts, borrowing from right to left instead of from left
to right, or to change his column difference procedure to larger minus smaller,
thereby eliminating the need to borrow. Thus, there can exist relationships be
tween bugs such that one bug suggests others. A major challenge in identifying
the procedural breakdown or description of a skill is to have the network handle
such ramifications and interactions of multiple bugs.

To provide a feeling for the range of "answers" that can come from simple
underlying bugs, we have incJuded in Fig. 3 "answers" to subtraction problems
using some of the bugs in the procedural network for subtraction. Notice that
a particular answer to a given problem can have more than one explanation
since several distinct bugs can generate the same answer. A special case is
that a student may harbor many misconceptions and still get the correct answer
to a particular problem!

The Power of Simulating Bugs in the Network

Given a procedural network like the one in Fig. 2, it is not always obvious how
bugs in any particular subprocedure or set of subprocedures will be manifested on
the surface, that is, in the answer. Some of the complicating factors are that a
single buggy subprocedure can be used by several higher-order procedures in
computing an answer or that two bugs can have interactions with each other.
These factors are further complicated by the fact that not all sample problems will
manifest all of the possible symptoms. If asked to make predictions about the
symptoms of a given bug, people often determine the symptoms by considering
only the skills or subprocedures used in solving one particular sample problem.
As a result, they often miss symptoms generated by other procedures that can, in
principle, use the given buggy subprocedure but which, because of the charac
teristics of the particular problem, were not called upon. If a different sample
problem had been chosen, it might have caused the particular faulty subproce
dure to have been used for a different pl.lrpose, thereby generating different
symptoms. These observations first led us to consider the value of simulation to
systematically verify a conjectured bug.

2. PEDAGOGICAL ISSUES

BUGGY: An Instructional Game for Training Student Teachers (and Others)

As we saw in Section 1, it is often difficult to infer a student's bug from his
answers. It was the need for teachers to appreciate this problem and to develop
strategies for coping with the possible range of student bugs that led us to
construct a game called BUGGY. BUGGY is a computerized game based on the
diagnostic interactions of a tutor and a student. The computer plays the part of an

I
i

!
I
~.

t g
f
I
!
~

I

I
, ~
~
ij
1\
\.
Il
Ii

!1

II
II
\i
3
ij
Ii
n
Ii
~
II

~

ij
!1

I
I ,

DIAGNOSTIC MODELS 165

errant student whose malady must be identified by the diagnostician (a role
played either by an individual or by a team). The diagnostician is presented with
an arithmetic homework problem that the "student" has done incorrectly. The
"student's" behavior is generated using the procedural network and shows the
symptoms of an underlying bug in one of the arithmetic subprocedures. The
diagnostician's job is to discover exactly what is the underlying misconception.
He does this by providing strategic test problems for the "student" to solve. The
problems given by the diagnostician are answered by the computer acting as the
student using the bugged procedure.

The computer also acts ali arbiter in the evaluation of the diagnostician's
theory. When the diagnostician indicates that he has discovered the bug, he is
asked to describe it. Then, to make certain that he really has found the bug, he is
given a five-problem test during which he must answer the problems in the same
errant way that the student would. In other words, he must simulate the "stu
dent's" bug. When the diagnostician's concept of the bug is sufficiently well
formulated that he is able to predict the buggy answer on all five problems, he is
considered to have diagnosed the student and he proceeds to a new bug.

We have found it beneficial to allow teachers to team up while playing the
diagnostician's role in BUGGY. The interaction between team members encour
ages verbalization of the decision-making processes involved in the game.

The following is a protocol of a team of teachers using BUGGY. The dialogue
is interspersed with commentary about the important issues. Those lines typed by
the team are marked with a vertical line in the left margin.

Protocol of a Team Using BUGGY

WELCOME TO BUGGY.
I HAVE CHOSEN A BUG. HERE IS AN EXAMPLE OF THE BUG.

17
+5
13

The system presents an example in which the student does not get the right answer. At present
the initial examples are stored in the network linked to the buggy implementation.

NOW YOU CAN GIVE ME PROBLEMS TO DETERMINE THE BUG.

18 43
+6 +79
15 23

The team generates problems that are answered by the "student". Notice that the team's test
problems are similar to the initial example generated by BUGGY. This is usually a poor
diagnostic strategy as it may leave other symptoms of a bug undiscovered.

Got the bug!

The team forms an initial hypothesis and tells the system they have discovered the bug. The
system now asks the team to describe the bug and then tests them on their understanding: Asking
for a description forces the team to verbalize their sometimes fuzzy idea of what the bug is and

!~

I
I
I

166 BROWN AND BURTON

often makes them realize how ill-defined or vague their idea actually is. In the present system,
the descriptions are saved but no attempt is made by the system to understand them.

PLEASE DESCRIBE THE BUG.

Student adds the number to be carried into the last column worked in.

This cryptic description is typical of those we have observed. Describing bugs in English is sur
prisingly difficult. What the team is trying to say is that if a column adds to more than 9, the units
digit and the carry digit are added together and the result is written as the answer. For example,
in the first column of the example problem, when 7 and 5 are added, I (the carry) and 2 (the units
digit) are added to get 3. The same with 8+6, 2+9, and 3+9. (This bug could easily arise if the
student were using Method 2 from Fig. I and mistakenly wrote the carry under the same column.)

The hypothesis does account for the observed behavior. Unfortunately, it is not the student's bug.
Notice the possibly humorous, probably disastrous results that would have transpired if the team
had stopped at this point and tried to tutor the student on the basis of their initial belief!

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY ABOUT THE BUG.
WHAT IS:

21
+39
ITt

To ensure that the team has found the correct bug, the system produces several problems for the
team to solve. At present, BUGGY has a heuristic problem generation program that gives a
broad range of "different" problems. (For examples in which the bug is very localized, such as
requiring a 0 in the top number, a special problem generator can be linked to the bug and wiIJ be
used instead.) These problems are then filtered to try to get three problems which cause symp
toms and two that give correct answers. This simple routine does SUrprisingly well at producing
critical problems. So well, in fact, that a more "intelligent" routine (which determined the set of
bugs cClnsistent with the student's data and then selected the test problems which split this set)
was discarded as unnecessarily time-consuming. However, this more intelligent technique
based on techniques discussed in Section 3-might be reverted to as our theory of procedural
bugs becomes progressively more subtle.

The team's hypothesis is revealed as incorrect by the first of the five test problems. BUGGY
presents its answer and then allows the team to enter more problems.

THAT'S NOT THE BUG I HAVE.
USING MY BUG:

21
+39 -15

TRY GIVING ME SOME MORE EXAMPLES.

I 51
tl707

21

99
+<J9
36

68
+9
23

After failing the test, the team gives a greater range of problems, specifically those using bigger
numbers. How is it that 5 1+ 1707 can add up to 21? By broadening the scope of example
problems they are able to reevaluate their initial hypothesis, dismiss it, and develop another one
that is complete and consistent with respect to the new errors.

I Got the Bug!

DIAGNOSTIC MODELS

PLEASE DESCRIBE THE BUG YOU THINK I HAVE.

the student is adding all the digits together.

HERE ARE SOME PROBLEMS TO TEST YOUR THEORY ABOUT THE BUG.
WHAT IS:

33 1091
+99 +60
124 17

8
+34

15

28
+70

17

90
+6 -15

167

This time the team's hypothesis passes the test and they are given the description of the bug
stored in the procedural network.

VERY GOOD. MY DESCRIPTION OF THE BUG IS:
THE STUDENt ALWAYS SUMS UP ALL THE DIGITS WITH NO REGARD TO COLUMNS.

A variant of this game assigns a cost to each problem the user poses in the
process of trying to discover the bug. At the same time, a much higher cost is
assigned for claiming to have "discovered" the bug but then failing to pass
criterion on the computer-generated test problems. A correctly structured cost
algorithm encourages the user to think carefully about the diagnostic value of
each problem he creates and not to jump to a conclusion too quickly or too
slowly.

Pedagogical Issues for Teachers

One application of BUGGY and the "diagnostic model" view of. procedut:al
skills lies in the domain of teacher training. The realization that errof.~ ihat app'~af
"random" are often the surface manifestations of a systematic und~rlYil)g bug'is
a major conceptual breakthrough for many student teachers. All too offen, ~-:
havior that appears to be random has a simple, intelligent, and complet~ ~nderly
ing explanation. By proper diagnosis, remediation for a student can be din;cted
toward his specific weaknesses. The importance of simply admitting that there
may exist underlying bugs cannot be overstressed. Without appreciation of thi~
fact, a teacher must view failure on a particular problem as either carelessness or
total algorithm failure. In the first case, the predicated remediation is giving more
problems, while in the second, it is going over the entire algorithm.9 When a
student's bug (which may only manifest itself occasionally) is not recognized by
the teacher, the teacher explains the errant behavior as carelessness, laziness, or
worse, thereby often mistakenly lowering his opinions of the student's
capabilities.

From the student's viewpoint, the situation is much worse. He is following
what he believes to be the correct algorithm and, seemingly at random, gets
marked wrong. This situation can be exacerbated by improper diagnosis. For
example, Johnnie subtracts 284 from 437 and gets 253 as an answer. "Of

Yin computer programming metaphors, this approach corresponds to the debugging activities, of
resubmitting the program because the computer must have made a mistake and of throwing the whole
program away and starting over from scratch and writing a new program.

168 BROWN AND BURTON

course", says the teacher "you forgot to subtract I from 4 in the hundreds place
when you borrowed." Unfortunately Johnnie's algorithm is to subtract the
smaller digit in each column from the larger. Johnnie does not have any idea
what the teacher is talking about (he never "borrowed"!) and feels that he must
be very stupid indeed not to understand. The teacher agrees with this assessment
as none of his remediation has had any effect on Johnnie's performance.

BUGGY, in its present form, presents teachers with examples of buggy be
havior and provides practice in diagnosing the underlying causes of errors. Using
BUGGY, teachers gain experience in forming theories about the relationship
between the symptoms of a bug and the underlying bug itself. This experience
can be cultivated to make teachers aware that there are methods or strategies that
they can use to diagnose bugs properly.

I.n fact, there are a number of strategy bugs that teachers may have in forming
hypotheses about a student's misconceptions. That is, the task of diagnosing a
student is a procedural skill and as such is susceptible to mislearning by the
teachers. A common strategy bug is to jump too quickly to one hypothesis.
Prematurely -focusing on one hypothesis can cause a teacher to be unaware that
there may be other competing hypotheses that are possibly more likely. A com
:non psychological effect of this approach is that the teacher generates problems
for the student that confirm his hypothesis! In some cases, teachers may believe
their hypo:heses so strongly that they will ignore contrary evidence or decide that
it is merely random noise. One general diagnostic strategy that avoids this pitfall
is the technique of differential diagnosis (Rubin, 1975) in which one always
generates at least two hypotheses and then chooses test problems that separate
them.

Another common strategy bug is to lock onto only one type of symptom. For
example, one student teacher was given the initial example (A), after which he
proceeded to generate example problems (B) and (C):

A

19
+9
199

B

23
+6

236

C

81
+8

818

At this point, he concluded that the bug was • 'writes the bottom digit after the top
number." But his hypothesis failed when he was given the first test problem:

8
+12

to which he responded 812. The bug is that single digit operands are linked on to
the end of the other operand, so that the correct buggy answer is 128. By
presenting examples only with a shorter bottom digit, he had obtained what
seemed to be confirming evidence of his hypothesis. A general rule which could

DIAGNOSTIC MODELS . 169

be employed to avoid this fixation is that whenever an example of incorrect
behavior has an asymmetry (length of top and bottom numbers), then try an
example with the asymmetry reversed. Using this rule, the teacher would also
generate problems with larger top numbers before he reached a conclusion.
BUGGY provides an environment in which teachers can experience the ramifica
tions of not employing rules and strategies during diagnosis. 10

Another important issue concerns the relationship between the language used
to describe a student's errors and its effect on what a teacher should do to
remediate it. Is the language able to convey to the student what he is doing
wrong? Should we expect teachers to be able to use language as the tool for
correcting the buggy algorithms of students? Or should we expect teachers only
to be able to understand what the bug is and attempt remediation with the student
with things like manipulative math tools? The following descriptions of hypoth
eses given by student teachers, taken from protocols of BUGGY, give a good
idea of how difficult it is to express procedural ideas in English. The descriptions
in parentheses are BUGGY's prestored explanations of the bugs.

"Random errors in carryover." (Carries only when the next column in the top number is
blank.)

"If there are fewer digits on the top than on the bottom she adds columns diagonally." (When
the top number has fewer digits than the bottom number, the numbers are left-justified and then
added.)

"Does not like zero in the bottom." (Zero subtracted from any number is zero.)

"Child adds first two numbers correctly. Then when you need to carry in the second set of
digits child adds numbers carried to bottom row, then adds third set of digits diagonally,
finally carrying over extra digits." (The carry is written in the top number to the left of the
column being carried from and is mistaken for another digit in the top number.)

"Sum and carry all columns correctly until get to last column. Then takes furthest left digit in
both columns and adds with digit of last carried amount. This is the sum." (When there are
an unequal number of digits in the two numbers, the columns that have a blank are filled with
the leftmost digit of that number.)

Even when one knows what the bug is in terms of being able to mimic it, how
is one going to explain it to the student having problems? Considering the above
examples, it is clear that anyone asked to solve a set of problems using these
explanations would, no doubt, have real trouble. One can' imagine a student's
frustration when the teacher offers an explanation of why he is getting problems
marked wrong, and the explanation is as confused and unclear as these are.

For that matter, when the correct procedure is described for the first time,
could it, too, be coming across so unclearly!

The problem of adequately describing bugs is further complicated by another

tOOne job for an "intelligent" tutor for BUGGY is to recognize and point out places where
instances of general rules and strategies should be used. This possibility is discussed in Section 4.

170 BROWN AND BURTON

surprising fact: Fundamentally different bugs can cause identical behavior! In
other words, there can be several distinct ways of incorrectly performing a skill
that always generate the same "answers". For example, here is a set of prob
lems:

38
+46
174

186
+254
2330

298
+169
2357

89
+64
243

One possible bug which accounts for these results is: the columns are added
without carries and the leftmost digit in the answer is the total number of carries
required in the problem. In this case, the student views the carries as tallies to be
counted and added to the left of the answer. But another equally plausible bug
also exists; the student places the carry to the left of the next digit in the top
number; then, when adding that column, instead of adding the carry to the digit,
he mistakes it as a tens column of the top digit-so that when adding 298 and
169, in the second column he adds 19 to 6 instead of 10 to 6. This generates the
same symptoms. So even when the teacher is able to describe clearly what he
believes is the underlying bug, he may be addressing the wrong one. The student
may actually have either one of these bugs. 11

An Experiment Using BUGGY with Student Teachers

To determine BUGGY's impact on student teachers, we had a group play the
game described in the beginning of this section. The goal of the experiment was
to explore whether exposure to BUGGY significantly improves the student
teacher's ability to detect regular patterns of errors in simple arithmetic prob
lems.1t The subjects were undergraduate education majors from Lesley College
in Cambridge. Their exposure to BUGGY lasted approximately one and a half
hours, during which time both addition and subtraction bugs were presented. The
effects of their exposure to BUGGY were measured by comparing each subject's
performance on the pre- and postexposure debugging test. The detailed analysis
and discussion of the experiment is beyond the scope of this paper but has been
described in a technical report (Brown et al., 1977). Briefly, though, the results
of the experiment showed that exposure to BUGGY significantly improved their
ability to detect regular patterns of errors.

We also investigated the qualitative issue of what the student teachers felt they
gained from their exposure to BUGGY. To assess their impressions, we convened
the entire group after they had finished using BUGGY. At that gathering, we first
asked them to write their responses to two questions (discussed below), and then
we taped a final group discussion in which we sought their reactions to using

IIThis possibility leads to an interesting question concerning how one can "prove" that two
different bugs entail logically the same surface manifestations.

12We would like to thank Dr. Mark Spikell of Lesley College for his assistance in this endeavor.

j
!
1

l
l
~
-I

I
fi
H
¥

~
if

I

DIAGNOSTIC MODELS 171

BUGGY and their suggestions for its deployment with school-aged students. The
following week, their professor, who also participated in the initial experiment,
held a second group discussion and reported to us the consensus, which was
consistent with what they had written.

Appendix 1 lists some of the written responses to the question • "What do you
think you learned from this experience?". All 24 responded that they came away
with something valuable. Many stated that they now appreciated the "complex
and logical thought process" that children often use when doing an arithmetic
problem incorrectly. "It makes me aware of problems that children have and
they sometimes think logically, not carelessly as sometimes teachers think they
do." "I never realized the many different ways a child could devise his own
system to do a problem." They also stated that they learned better procedures for
discovering the underlying bug. "I learned that it is necessary to try many
different types of examples to be sure that a child really understands. Different
types of difficulties arise with different problems."

We also asked the students "What is your reaction to BUGGY?" Many felt
that "BUGGY could be used to sharpen a teacher's awareness of different
difficulties with addition and subtraction." They felt that it might be of use in
grade school, high school, or with special needs students, or even as a "great
experience in beginning to play with computers."

Pedagogical/ssues More Specific to Middle School Students

We feel that all of the issues discussed above are as important for school-level
students as they are for teachers. There is great value in introducing young students
to procedural notions. The BUGGY ~ystem provides a well-controlled environ
ment for such an introduction, as well as one that can be easily integrated into a
standard curriculum. Also note that for a middle school student to play the
diagnostician's role requires his studying the procedural skill per se (Le., its
structure) as opposed to merely performing it. This experience can be especially
important as students begin algebra, which is their first exposure to procedure
"schema." By presenting procedures as objects of study, BUGGY can thus be
used to explore the powerful ideas of hypothesis formation, debugging, debug
ging strategies, and so on. Of course, such a use requires more than just the
BUGGY game.

Another reason for having students develop a language for talking about pro
cedures, processes, bugs, and so forth is that such a language enables them to
talk ~bout, and think about, the underlying causes of their own errors. This
facility is important in its own right, but it also gives a student the motivation and
the apparatus for stepping back and critiquing his own thinking, as well as saying
something interesting and useful about his errors. The difficulty in getting a
student to test the plausibility of his own answer (such as by estimating it) may be
due to the lack of any appropriate introspective skills that the student could use
once he knew his anSWer was wrong.

!
!
I
!
!
I

I
!
!
!

\ , ,
I ,
L

I
I

172 BROWN AND BURTON

An important ancillary, nonmathematical benefit of a student's involvement
with BUGGY is exposure to the idea of role reversal. 13 To communicate effec
tively with others, children must learn not only language, but also the use of
"social speech"-speech that takes into account the knowledge and perspective
of another person (Krauss & Glucksberg, 1977). Piaget uses the term • 'childhood
egocentrism" to describe the child's inability to detach himself from his own
point of view and to take into consideration another's perspective. Although
Krauss and Glucksberg agree that egocentrism plays a large part in very young
children's speech, they believe that even in older children the ability to role-play
breaks down when they are faced with a demanding cognitive task. We believe
that taking on the viewpoint of the errant student by analyzing another's mistakes
can provide valuable practice in role-playing in a demanding situation and can be
beneficial to the development of "social speech."

Some Results on Using BUGGY with Seventh and Eighth Graders

To explore the effect of the BUGGY game on seventh and eighth graders and
to discover what type of additional instructional material and activities must back
up the use of this computer-based system, we placed a terminal running BUGGY
in a classroom. The teacher provided a short introduction to the game and the
notion of bugs and then the students14 were free to use the system during the
term. During this experience, we noticed the following phenomena. When the
students first started trying to discover the underlying bugs in BUGGY, their
most common reaction, upon seeing the mistakes of the simulated buggy stu
dent, was to exclaim "Wow, how dumb and stupid this kid must be." How
ever, after a week or so of exposure to BUGGY, the students' reactions changed
from believing that the simulated student was dumb to one of appreciating that
there was, in fact, a systematic explanation for what this student was doing. They
began to see that he (it) had fundamental misconceptions as opposed to being just
stupid. This result is particularly exciting, since it paves the way for students to
see their own faulty behavior not as being a sign of their stupidity, but as a source
of data from which they can understand their own errors.

Unfortunately, we have as yet no data concerning the transferability of this
awareness, and whether or not it will lead to students being more capable and
willing to look over their own work for errors .

.
13This idea is attributable to Tim Barclay, at the Cambridge Friends School, who has been

experimenting with various uses of BUGGY with sixth through eighth graders.
14 All of the students participating in this activity had already mastered the procedural skills being

'"bugged." In fact. we have severe reservations about the advisability of younger students using this
particular game especially if they have not mastered the correct versions of the skills. However, there
are extensions to BUGGY (discussed in Section 4) that make it appropriate for school children in the
process of learning the given procedural skills.

j
l

!
\

I
I

!
I
I

I

DIAGNOSTIC M9DELS 173

3. AN AUTOMATED DIAGNOSTIC MODELING SYSTEM

In this section, we describe a diagnostic system that is based on our arithmetic
procedural network, recently completed by Burton. The notion of modeling
procedural skills as executable networks and then expressing all potential mis
conceptions as buggy versions of subprocedures in the network provides a tech
nique for efficiently determining the consequences or symptoms of a given
collection of bugs on a set of problems. It therefore has the potential of diagnos
ing and explaining all of the procedurally incorrect answers for any given prob
lem. For example, as we indicated in Section 1, given a procedural network for
addition and an addition problem (like 35 + 782), all the buggy subprocedures as
well as combinations of buggy subprocedures, can be inserted and then executed
in the addition procedure one by one so that all the possible buggy answers to the
problem are gen~rated. Those answers can then be compared to a student's work
to determine possible explanations of the student's particular misconceptions. In
this way, one might use the procedural network to diagnose a student's basic
misconceptions over an entire homework assignment or an arithmetic test.

There are, however, several complications with this simple paradigm for diag
nosing a student. One is that the student who has developed a novel singleton bug
(as opposed to one that arose out of a combination of "primitive" bugs) will not
be diagnosed. Another is that students do make "random" mistakes (presum
ably as many while following an incorrect procedure as a correct one) that could
erroneously lead to the exclusion of his bug or the inclusion of another bug that
happened to coincide with his "randomness." Finally, blindly considering all
possible combinations of bugs can lead to a combinatorial explosion of pos
sibilities. In what follows, we shall discuss some solutions to these problems.

A Deep-Structure Data Analysis Tool

As a first step in developing techniques for automatically diagnosing a stu
dent's errors, we sought a-large data base of student answers on some arithmetic
test. We started out this way for two reasons. First, an analysis of the student
errors not already explained by the existing network can suggest extensions to the
network that may have been overlooked. Obviously, if the BUGGY system is
going to be useful as a diagnostic tool, its arsenal of bugs must be very exten
sive! Second, once a "complete" network of bugs has been constructed, analyz
ing a large data base can provide some evidence of how many student errors are
procedural rather than "careless" errors. Such an analysis also indicates how
consistently students apply buggy procedures. Do they use the buggy procedure
every time it is appropriate? When they get a correct answer does that contraindi
cate their use of a buggy procedure, or is it just that the buggy procedure for this
problem does produce the correct answer? This analysis also reveals which
procedural errors occur most often, and in what combinations. Answers to these

i - ,
:

174 BROWN AND BURTON

questions not only influence the design of the diagnostic system (as we will see
later) but also have an impact on how that system could be used.

We were fortunate to be able to obtain a large collection of pertinent data15

already in computer readabl~ form. This data stemmed from an achievement test
administered in Nicaragua ~o fourth, fifth , and sixth graders. There were 10
different test versions, each consisting of 30 problems combining both simple
and complex addition and subtraction problems. One version of the test is given
in Fig. 4. The makeup of each test followed a complex procedure discussed by
Friend (1976) .

8 7 99 43 353 213 633 521 81
+2 -3 +9 -79 +41 -342 21 -221 502 -17

123 4769 9 257 597 6523 156 103 8 7315
13 -0 91 -161 +75 -128_0 873 -64 54 -6536

610 +6 +311 +9
+12 --.

505 1039 77 705 917 10038 864 10060 579 7001
743 -44 18 -9 639 -4319 9 -98 96 -94

12 +47 +5 4 833
+35 +3 +43

FIG. 4 A sample test;

Admittedly, the~e data have the limitatio'n that the particul~ results derived
from them are not necessarily generalizable ~p. American schoqls. Although the
prpcedures taught for addition and subtraction are similar, the environmental and
cultural experiences of the students are quite different. Nevertheless, this data
base provides a convenient starting point for this research as well as a ge~eral
,dea of the percentage of students making procedural as opposed to "random"
error,s. In addition, the methods we devised to analyze these data would apply
equally well to data collected under other circumstances.

The Process of Organizing the Data

The data base ~vailable for this study was large-19,SOO problems performed
by 1300 student~~ We limited ourselves to consideration of just the subtraction
problems on the test because the addition problems included some in which three

1liThe data used in this study were made available by the Institute for Mathematical St~les in the
Social Sciences at Stanford University. The data were collected in Nicaragua as part of the Nicaragua
Radio Mathematics Project supported by Contract AIO/CM-ta-C-73-40 from U.S. AgencY of Interna
tional Development. We are grateful to Barbara Searle for allowing us access to the data. See Searle,
Friend. and Suppes (1976) for a description of the NRM project.

DIAGNOSTIC MODELS 175

TABLE 1
An Initial Bug Comparison TableD

8 99 353 633 81 4769 257 6523 103 7315 1039 705 10038 10060 7001
3 79 342 221 17 0 161 1280 64 6536 44 9 4319 98 94
5 20 412 64 4769 96 5243 39 --' 995 11 779 696 5719 9962 6907

Student answers

- - 98 418 169 738 1095 706 14319 10078 7097
FORGET/BORROW /OVER/BLANKS
• • • • • • 139 ••• ••• 15719 10062 7007

STOPS/BORROW/ AT/ZERO

• • • • • • 49 * ... ••• 6719 10062 7017
DlFF/O-N=N
• • • • • • 839 ••• 9978

ADD/I NSTEADOF/SUB
11 178 695 854 ••• • ••• 7803 167 13851 1083 714 14357 10158 7095

°This table presents how well a student's answers are explained by different bugs; " and ... "
indicate places of agreement. (See text for discussion.)

or more numbers were to be added-a condition that can produce errors not
modeled in the present addition network.

As a first step, we extended the BUGGY system to print out "bug compari
son" tables for students as shown in Table 1. These tables summarize how well
the student's behavior can be explained or predicted by a simple bug in the
network. The forniat of a table is as follows: The problems with the correct
answers appear at the top of each table. The student's answers appear on the next
line using the convention that' '-" indicates a correct student answer. Each of
the remaining lines provides the name of a bug and the answers produced by the
assumption that the student had this and only this bug. For each of these lines a
" ••• " means that the bug predicted the student's incorrect answer. A"·"
means that the bug in that row would give the correct answer and also that the
student got the correct answer. Thus "." and ,,* •• " indicate places of agree
ment between the student's behavior and the simulated behavior of the bug. An
" !" means that the bug would give the correct answer, but that the student gave
an incorrect one. 16 A number which appears in a bug row is the answer that the
bug would give when it is different from both the student's answer and the
correct answer. 17

161n both the "." and the "!" cases, the bug has not manifested itself in the answer as an error. For
example. if a bug is O-N=O, it would not show itself in a problem unless there is a 0 in the problem's
top number (or 0 is generated during solution by borrowing from a column with a I).

17An additional case arises when the student does not answer a problem. Although none of our
example tables will include this case, it is marked with a "#". "#" is also used in a bug row to
indicate that the bug could not do the problem. We saw very little evidence of students not doing a
problem possibly because the students were given as much time as they wanted to complete the tests.

176 BROWN AND BURTON

Initially, any bug that explained any of the student's behavior (Le., generated
at least one "***") was included in the table. However, these tables proved to be
too large to conveniently read so a routine was added to delete any bug if there
was another bug that accounted for the same set of answers as well as some
others.

Analysis of a Bug Comparison Table

When we are determining whether or not a student has a particular bug, "*,,
and "***,, are confirming evidence that the student has the bug while both "!"
and numbers in the bug row are disconfirming evidence. We refer to the results in
a bug comparison table as "evidence" because there may be several possible
explanations for any particular answer to one problem. The student may have
made a careless error while following his bugged procedure, therefore leading
to a number in that bug row instead of a "***". He may have an unmodeled
combination of bugs, only one of which manifested itself and resulted in an
•• !" in the row of the other bug. Or he may have been following a totally
different procedure, or no procedure at all, that just happened to give him the
same answer as a bug leading to a "***" in a bug row. The final decision on
whether or not the student is using a buggy subprocedure must be made by
considering all of the evidence from the test. But how should conflicting evidence
be weight~d and summed?

Let us consider an analysis of the bug comparison table for a particular stu
dent, Table 1. Both FORGET/BORROW/OVERIBLANKS and STOPS/
BORROW/AT/ZERO produce the same answer in problems 11 (1039-44) and
12 (705 -·9)-the errant student answers. But neither has particularly good
agreement across the rest of the table. Which, if either, misconception was the
student operating under? Our inclination is to believe that neither bug satisfactor
ily explains the behavior, but how does one decide in general? To answer these
questions, we analyzed, by hand, several hundred students' tables like the one in
Table 1. During these formative analyses, the tables were examined to ferret out
students whose behayior was not captured by any existing bugs. The work of
these students was closely scrutinized for any underlying computational pattern.
If a pattern could be discerned, the incorrect subprocedure was defined and this
new "bug" was added to the network. During this formulation period our list of
bugs grew from 18 to 60.

Multiple Bugs and Their (Nonobvious) Interactions

Most of the 60 subtra~tion bugs discovered during this period were primitive,
in the sense that each redefined only one subprocedure in the subtraction net
work. Was it possible that some of the students' behavior was due to multiple
bugs that we had failed to notice? To explore this possibility, we programmed the
BUGGY diagnostic system to try all pairs of bugs. That is, buggy definitions of

DIAGNOSTIC MODELS 177

TABLE 2
Multiple Bug Comparison Table

8 99 353 633 81 4769 257 6523 103 7315 1039 705 10038 10060 7001
3 79 342 221 17 0 161 1280 64 6536 44 9 4319 98 94 - 96 5243 39 ----5 20 11 412 64 4769 779 995 696 5719 9962 6907

Student answers

- - 98 418 169 738 1095 706 14319 10078 7097
DIFF/O-N=N and STOPS/BORROW/AT/ZERO
* * * * * * *** 839 *** *** *** *** ***

ADD/INSTEADOF/SUB
II 178 695 854 *** * *** 7803 167 13851 1083 714 14357 10158 7095

two subprocedures were systematically inserted and then executed. I8 This pro
cess turned up 270 bug combinations whose symptoms were different from any
of the primitive bugs and from each other in one test of 15 problems.

In order to illustrate the diagno'stic power of this generative techniqiIe, con
sider the example of the student whose work is shown in Table 1. From Table 1,
no discernible pattern is evident. The student's work does however admit to a
beautifully simple characterization which is the composite of two primitive bugs.
Table 2 shows the new bug comparison table that was generated for this student
from comparisons using mUltiple bugs. Notice that the comparison line which
resulted from the combination of the two bugs is substantially different from
either of the single bug lines or even from a linear combination of the two
comparisons. This is due to the nonobvious interactions of the two bugs, particu
larly where the intermediate products of one of the bugs enables or disables the
other bug. For example, in problem 9 (103-64), the "O-N=N" bug alone wilJ
not manifest itself because the borrow from the first column will have changed
the 0 in the second column to 9. However, the "stops-borrow-at-zero" bug19 has
the side effect of not changing the 0 to 9, and hence enables the "O-N=O"
bug. In general, the interactions between bugs can be arbitrarily complex. This
can make a teacher's diagnostic task very difficult.

INDuring this process, bugs which were alternative definitions of the same conceptual procedure, of
course, could not be paired. There were also cases where one bug would preclude another. For
example, SMALLERIFROM/LARGER precludes any of the bugs in the borrowing procedures as
borrowing is never required. In these cases, a bug can prevent other portions of the network from ever
being executed and hence "switching in" bugs in the unused portion would be useless as long as the
higher bug remained in effect. Rather than an extensive analysis of the potential interactions of bugs,
we opted for the simpler solution of comparing the bugs via their symptoms over a fixed set of
problems.

IlIln the "stops-borrow-at-zero" bug, the student does not know how to borrow from a column
which has a 0 in the minuend so he does not do anything to it. He does however add I 0 to the column
he is processing.

178 BROWN AND BURTON

Judging Diagnostic Credibility

Using the multiple bug comparison tables generated for about one hundred
students, we identified which of the students, in our judgment, were making
procedural, as opposed to careless or random errors. During this hand-done
classification process, we articulated and refined our intuitive use of the evidence
from a student's entire test in order to make that decision. Eventually, our
understanding and description of the process became precise enough to be com
puterized so that it could be run on all 1300 students.

Our hand-done study suggested six intuitive groupings of students:

1. Those students who got all the problems correct.
2. Those students who erred on any number of problems but whose errors

were explained by one bug or one bug pair.
3. Those students who clearly exhibited the presence of a bug but who also

exhibited some behavior that was not explained by the bug.
4. Those students who missed only one or two (of fifteen problems) and in a

way not consistent with any bug.
5. Those students who exhibited some buggy behavior but not consistently.
6. Those students whose behavior appeared random rel~tive to the known

bugs.

Tables 3, 4, and 5 show representative students from Groups 2, 3, and 5. The
intuitive justification for these groupings stemmed from the possible tutorial
approaches a teacher might take to remediate a student. The classes of students
and the possible very general tutorial approaches we saw are:

i. those students who are correct or very nearly correct and probably just
need more practice if anything (Groups I and 4);

ii. those students who are exhibiting consistently incorrect behavior and,
therefore, whose remediation may profitably be viewed as a process of
"debugging" the student's present algorithm (Groups 2 and 3); and

TABLE 3
Example of a Student Whose Behavior is Well Explained by One Bugo

8 99 353 633 81 4769 257 6523 103 7315 1039 705 10038 10060 7001
3 79 342 221 17 0 161 1280 64 6536 44 9 4319 98 94
5 20 II 412 64 4769 96 5243 39 779 995 696 5719 9962 6907

Student answers

BORROW/FROM/ZERO

* * * * * * *
Best guess: BORROW/FROM/ZERO
GROUP=2

139 1995 76 15719 10962 7007

* *** * *** 796 *** *** ***

°The bug, BORROW/FROM/ZERO, is that when borrowing from acolumn in which the top number
is 0, the student writes 9 but does not continue borrowing from the next column. to the left.

TABLE 4
Example of a Student Who Exhibits a Consistent Bug but Also Has Other' Problems

8 99 353 633 81 4769 257 6523 103 7315 1039 70S 10038 10060 7001
3 79 342 221 17 0 161 1280 64 6536 44 9 4319 98 94
T 20 -1-1 412 64 4769 96 sm T9 779 995 696 5719 9962 6907

Student answers

- - - 74 9 1209 9S 704 10019 70 6007
DIFF/O-N=O and MOVE/OVER/ZERO/BORROW

• • • • • • • ••• 809 • •• 606 ••• • •• •••
BORROW/ACROSS/SMALLER/ ADDlNGrrEN/EXCEPT/ZERO and DIFF/O-N =0

• • • • • • • ••• 889 ••• 606 ••• • •• • ••
SUBIUNITS/SPECIAL and SMALLERIFROMILARGER&O-N =0
• • • • • 116 5363 ••• 1015 ••• 10042

BORROW/NO/DECREMENT and QUiTIWHEN/BOTTOM/BLANK

• • • • ••• 9 196 5343 49 1889 ••• 6 6729 72 17
BORROW/NO/DECREMENT
• • • • •• * • 196 5343 149 1889 1095 706 16729 10072 7017

SMALLER/FROM/LARGER
• • • • 76 • 116 5363 161 1221 lOIS ••• 14321 10038 7093

Best guess: DlFF/O-N=O and MOVE/OVERIZEROIBORROW
GROUP=3

iii. those students for whom a thorough reteaching of the entire algorithm
appears to be essential (Groups 5 and 6).

We are definitely not saying that for all students in Groups 2 and 3 the only
or even the best pedagogy is to focus on the student's buggy procedure. Instead,
we are trying to identify those students who are consistently making the same
mistake and for whom debugging of their procedures may be useful.

I
L
!:
I,
i :

I,
I I

~ j
b

!'
Ii
I';

" "

180 BROWN AND BURTON

Classification Algorithm

The algorithm that we eventually converged on for assigning a student to one
of the six major categories defined in the previous section is rather involved, so
some readers may prefer to skim the following discussion. If the student erred on
at least one problem, each bug was rated according to how well it accounted for
this behavior. This rating results in a group number for each bug. 20 The rating of
each bug depends on the number of answers falling into each of five groups:

i. those student answers for which the bug predicts the student's incorrect
answer (the number of "***"s appearing in the bug's line referred to as
N***);

11. those student answers for which the bug predicts the student's correct
answer (the number of "*"s--N*);

iii. those student answers for which the bug predicts the correct answer but
which the student answered incorrectly (the number of "!"s--N!);

iv. those student answers for which the bug predicts an incorrect answer but
which the student answered correctly (Nr);

v. those student answers for which the bug predicts an incorrect answer
different from the student's incorrect answer (Nw).

This analysis gives a symptom vector of five numbers (N***, N*, N!, Nr, Nw).
From the symptom vector, a group number corresponding to the six major

categories of student behavior given in the previous section is calculated for each
bug using the following procedure:21

A bug indicates Group 2 student behavior if it agrees with all of the student's
an~wers (N! + Nr + Nw = 0) or if it agrees more than 75% of the time on
problems in which it predicts a wrong answer [N*** ~ 3 x (N! + Nr + Nw»).

A bug indicates Group 3 behavior if it explains two or more student errors and
predicts more correct than incorrect answers (N*** > Nr + Nw + N!/2). In this
formula, those problems in which the bu"g did not exhibit a symptom are
weighted by half-the intuition is that, on these problems, the student may be
exhibiting other bugs as well.

A bug is also rated as indicating Group 3 behavior if it is a primitive bug (not
multiple) that predicts more than half of the student's errors, and predicts errone
ous behavior more times than it fails to do so (N*** > N! + Nw andN*** > Nr).

A bug indicates Group 5 behavior if it predicts at least two incorrect answers
(N*** ~2).

Otherwise a bug is rated Group 6.

2°ln the actual implementation. the bugs are ordered by the number of symptoms accounted for and
are rated from the most promising bug until the group number increases.

2 1 As we have said, the classification scheme was based primarily on empirical studies. There are
intuitive justifications (rationalizations) for each of the decisions; however, in the final analysis, this
algorithm was used because it classified students in close accordance with our hand-done analysis.

DIAGNOSTIC MODELS 181

TABLE 6
Totals and Percentages of Student Classifications"

Group

2 3 4 5 6 Totals
Grade No. (£k) No. (%) No. (%) No. (%) No. (9C) No. (%) No. (%)

4th 10 2.4 101 20.5 93 18.9 31 6.6 197 39.5 72 14.7 504 100.0

5th 10 3.0 86 22.0 73 18.7 38 10.0 132 33.5 60 15 .5 399 100.0

6th 17 4.5 88 21.3 64 15.6 47 11.6 131 31.5 75 18.2 422 100.0

Totals 37 3.2 275 21.2 230 17.8 116 9.2 460 35.2 207 16.1

a Groups 2 and 3 are consistently following an incorrect procedure (see text for further explanation of
groups).

The student is assigned the group number of the lowest rated bug. If the lowest
rated bug is not Group 2 or 3 and the student has missed only one or two
problems, he is put in Group 4. If the student is put in Group 2 or 3, the bug with
the lowest group rating (and which accounts for the most symptoms in cases of
ties) is chosen as the most likely hypothetical student bug. Examples of this result
can be seen in the last line of Tables 3 and 4.

Diagnostic Results for the Nicaraguan Data Base

The above classification procedure was used to analyze the set of test re
sponses for 1325 fourth, fifth, and sixth graders. 22 A summary of the diagnostic
classification by grade is given in Table 6. As can be seen, nearly 40% of the
students exhibited consistently buggy behavior. This figure agrees with a similar
result reported by Cox (1975). The similarity across grade level may be due to
the fact that addition and subtraction are not presented again after the 4th grade.

Table 7 gives the frequency of the 14 most common bugs. Most of the difficul
ties arise while borrowing, especially when a zero is involved. The most com
mon bug was "when borrowing from a column in which the top digit is 0, change
the 0 to a 9 but do not continue borrowing from the next column to the left"; it
occurred alone or together with other bugs 153 times in the 1325 student tests.

What Does a Test Score Mean?

One of the ramifications of this fully automatic diagnostic technique concerns
its ability to score tests based on what a student knows or does not know as

22An implementation note: The entire data analysis program including the BUGGY subtraction
models is written in I NTERLISP . The analysis of all 1325 students against the 330 bugs required on
the order of 90 minutes of CPU time on a PDP-KLIO.

TABLE 7
Bug Frequency Table

The 14 most frequently occurring bugs in a group of 1325 students

57 students used: BORROW/FROM/ZERO (103-45= 158)
When borrowing from a column whose top digit is 0, the student writes 9, but does not

continue borrowing from the column to the left of the O.
54 students used: SMALLER/FROM/LARGER (253-118= 145)

The student subtracts the smaller digit in a column from the larger digit regardless of
whiqh one is on top.

50 students used: BORROW/FROM/ZERO and LEFT/TEN/OK (803-508=395)
The stud~nt changes 0 to 9 without further borrowing unless the 0 is part of a lOin the left

part of the top number.
34 students used: DIFF/O-N=N and MOVEIOVER/ZERO/BORROW

Whenever the top digit in a column is 0, the student writes the bottom digit in the ansWer;
i.e., O-N =N. When the student needs to borrow from a column whose top digit is 0, he
skips that column and borrows from the next one.

14 students used: DIFF/O-N=N and STOPS/BORROW/AT/ZERO
Whenever the top digit in a column is 0, the student writes the bottom digit in the answer;

i.e., O-N=N. The student borrows from zero incorrectly. He does not subtract 1 from the 0
although he adds 10 correctly to the top digit of the current column.

13 students !Jsed: SMALLER/FROM/LARGER !lnd O-N=O (203-98=205)
The student subtracts the smaller digit in each ~olumn from the larger digit regan:Ue~s of

which one is on top. The exception is that when th~ toP digit is 0, a 0 is written as the answer
for that column; i.e., O-N=O.

12 stlldents used: DIFF/O-N=O and MOVEIOVER/ZERO/BORROW
Whenever the top digit in a column is 0, the student writes 0 in the answer; i.e., O-N =0.

When the student needs to borrow from a column whose top digit is 0, he skips that column
and borrows from the next one.

II students used: BORROW/FROM/ZERO ~d DIFF/N-O=O
When borrowing from a column whose toP digit is 0, the student writes 9, but does not

continue bolT9wing from the column to the left of the O. Whenever the bottom digit in a
column is 0, the student writes 0 in the answer; i.e., N -0=0.

10 students used: OIFF/O-N=O and N-O=O (302-d92=290)
The student writes 0 in the answer when either the top or the bottom digit is O.

10 students used: BORROW/FROM/ZERO and DIFF/O-N=N
When borrowing from a column whose top digit is 0, the student writes 9, but does not

continue borrowing from the column to the left of the O. Whenever the top digit in a column is
0, the student writes the bottom digit in the answer; i.e., O-N=N.

10 students used: MOVEIOVERIZERO/BORROW (304-75= 139)
When the student needs to borrow from a column whose top digit is 0, he skips that column

and borrows from the next one.
10 students used: DIFF/N-O=O (403-208= 105)

Whenever ~ bottom digit in a column is 0, the s~udent writes 0 in the answer; I.e.,
N-O=O.

10 students used: DIFF/O-N=N (140-21 = 121)
Whenever the top digit in a column is 0, the student writes the bottom digit in the answer;

i.e.,O-N=N.
9 students used: DIFF/O-N=N and LEFTITEN/OK (908-395=693)

Wh~n there is a 0 on top, the student writes the bottom digit in the answer. The exception
is when the 0 is part of 10 in the left columns of the top number.

182

DIAGNOSTIC MODELS 183

opposed to scoring it based solely on the number of right and ~rong~nswers on
his test. Even with the advances in criterion referenced testing, it remains tflje
that a test is simply scored by what problems a student ,gets right o.r wrong.
Because of the embedded nature of most procedural skills, a s~ud~nt .can get
lPany problems wrong simply by having one fundamental underlying bug in a
primitive subprocedure that he is using to solve different problems OJ;) the test. In
such a situation, the score that a student gets can bear little relationship to the
misconcepti9ns that he actually harbors! A student can receive a low score either
because he has many misconceptions, each one of which is more or less t~e top
of the procedural network of skills he is using, or he may ,po.ssess a few, o.r ev.en

, ,

just one, miscoQception that is deep down inside the in.temal workings ~f the
procedural network and which is constantly being used to c9lllp~te interm~diate
results used by higher,..up subprocedures.

Current techniques for correcting te$ts do not offer easY and reliable methods , . ,

of separating these two situations. The diagnostic modeHng technique discussed
above can take the answers that a stucJent gives on a test and, through ~t~

modeling system, show not only which questions wt;re aJ;lswered iQ.co~ct1y ~ut
why they were incorrectly amlwered. It is inter~sting to note that 107 of the 1325
students tested had a bug in their borrow-from-zero subprocedure ,and missed 6
out of the 15 problems on the test because of this ot:le l,ln,derlying b,ug. The
characterization given by BUGGY is a much fairer eyalu,ation ,tban sc~ring these
students 60% correct.

A Methodological TQol for Judging the Diagnostic Quali,ty of a Tes!

The procedural network appar,atus also provides a me_thodological tool for
judgin,g the quality or diagnostic ,capabilities of a given test. This ,~.low.sQn.e to
talk about how well the test can discover and delineate common mi,~con.c.~ptions .

Given a test, each bug in the network can be used to answ~rall ofd)e problffms.
The resulting "buggy" r~sponsesare then used to pa.rtition tbe bJ,lgs: ,two bugs
are put in the same partition if they produce the same ~swerstoall of the ~~st
problems. "Di,agnosticity" of the test can now be defined in terms of th~ size of
the resultant partitions. A diagnostically perfect test has every bug in a partition
by itself. Those bugs in the same partition are undifferentiated ,by the test. Any
bugs in the same partition as the cortect answers are not tested for .at ,all. Taking
the test in Fig. ,4, this system discovered tbat a stu4ent can have eith~r of two
bugs (BORROW/ACROS~/SAME or N -N-:-l/AFrER/BORROW) and still get
100% correct answers.

Such a system could provide professional test designers with ,a (ormal tool for
establishing the diagnostic quality of a proposed test. Ho)\'ev~r, our bettef is that
professional test designers have good intuitions about di~gnos~ic t~sts. This belief
was confirmed by running two standardized national tests througb the 330 sub
traction bugs. One of the tests left only one bug unexposed i~)7 problems while
the other left 4 b.ugs unexpos~d in 10 problems. The unexposed bugs were ~e

184 BROWN AND BURTON

for they were not even found in the Nicaraguan data. There is a difference,
however, between exposing a bug and diagnosing it. Exposing a bug amounts to
having at least one problem on the test in which the bug is manifested; diagnos
ing a bug requires having test problems which differentiate between it and every
other bug.

Using the Artificial Intelligence paradigm of generate-and-test, it would be
straightforward to use BUGGY as a diagnostic test generator. The problem
generator must produce "interestingly" different problems. This generation can
be done using important features of problems such as the number of times
borrowing is necessary, or whether or not a zero appears in the top number. Sets
of generated problems can then be filtered using the procedural network to
identify bugs which are not diagnosed. From the bugs left undiagnosed, features
can be retrieved which direct the generation of alternative problems to be added
to the test. In this way, a highly diagnostic test can be developed. Furthermore,
since the answers that would be generated by using the bugs are known, the test
could be ' a multiple choice test and still maintain its total diagnostic property!
Similarly, a real-time adaptive testing system could be created based on these
tools.

4. FUTURE RESEARCH

This paper has presented some of the problems that must be faced in diagnos
ing failures in procedural skills, and has described some idea3 about the formula
tion an~ implementation of diagnostic modeling techniques that address these
problems. It has also presented some novel uses of diagnostic models as a
gaming/instructional device, as a deep-structure test grader, and as a tool to judge
the diagnostic quality of a test or a . ~et of problems. The central idea underlying
this research is the use of a procedural network as a means of representing
diagnostic models. The critical properties of this representation scheme are its
abilities to represent an appropriately structured breakdown of a skill into sub
skills, to make explicit the control structures underlying a collection of skills, and
to make the knowledge encoded this way directly executable. Such a representa
tion enables a particular subskill to be easily modified and then simulated or
executed so that the ramifications of the modification can be quickly ascertained.
The structure of the network becomes important not only because it allows
efficient modification but also because the representation of the modification can
be used to contain explanatory or remedial material. 23 In addition, the structure
allows certain types of control structure failures to be directly represented in the
network and hence articulated-if necessary.

l3Contrast this with the (admittedly strawman) technique of randomly switching instructions in a
machine language program which carries out a skill. Even if a student's behavior could be duplicated,
the resulting "model" would be worthless as an explanatory device or as an aid to remediation.

.'

DIAGNOSTIC MODELS 185

Relationship of Diagnostic Models to Other Kinds of Structural Models

We now tum to a brief look at the past and current work on structural models
of students and how they relate to diagnostic models based on procedural net
works. Most of the past and current research on this subject has ~en focused on
the intuitively appealing notion that if one has an explicit, well formulated model
of the knowledge base of an expert for a given set of skills or problem domain,
then one can model a particular student's knowledge as a simplification of the
rules comprising the expert's procedures (Barr, 1974; Brown, 1974; Brown &
Burton, 1975; Burton & Brown,) 977; Carbonell & Collins, 1973; Carr & Gold
stein, 1977; Collins, Warnock, & Passafiume, 1975). Recently, Goldstein has
expanded this concept in his Computer Coach research and has coined the term
"overlay model" for capturing how a student's manifested knowledge of skills
relates to an expert's knowledge base (Goldstein, 1977).

The work reported in this paper differs in that the basic modeling technique is
based on viewing a structural model of the student not as a simplification of the
expert's rules but rather as a set of semantically meaningful deviations from an
expert's knowledge base. 24 Each subskill of the expert is explicitly encoded,
along with a set of potential misconceptions of that subskill. The task of inferring
a diagnostic model then becomes one of discovering which set of variations or
deviations best explains the surface behavior of the student. This view is in
concert with, although more structured than, the approach taken by Self (l974) in
which he models the student as a set of modified procedures taken from a
procedural expert problem-solver.

Another closely related approach to modeling a student's knowledge base uses
a production rule encoding scheme (Smith & Sleeman, 1977; Young, 1977).
However, procedural networks differ both theoretically and computationally
from these efforts in that they are designed to make explicit the representation of
the control-structure knowledge underlying a macro skill so that it can be effi
ciently diagnosed and explicitly tutored.

In the remainder of this section, we present our view of the more promising
directions for research relating to diagnostic models.

Extensions to the Gaming Environment

In the second section, we described the BUGGY game which was designed to
introduce the notion of "buggy" behavior and provide practice in diagnosing it.
Although this activity was initially designed for training student teachers in
diagnosing and articulating procedural bugs, it has also been used as an activity

2
4Because these deviations are based on both the student's intended goals and the underlying

teleology of the subskills. we have no automatic way to generate them (as opposed to what could be
done if the deviations were based on the surface syntax of the rules), However, ongoing work by the
authors. as well as Miller and Goldstein (1976) and Rich and Schrobe (1976), is directed toward
helping to overcome this limitation,

186 BROWN AND BURTON

to get -kids to introspect oil their already known procedures as well as to en
counter the concept of bugs and debugging strategies in an easily grasped con
text.

A limitation of the current gaming environment is that most of what the players
learn while using the game they Ie-am Qr discover on their own. At the moment,
BUGGY does no explicit tutoring; it simply provides an environment that chal
lenges their theories and encourages them to articulate their thoughts.25 The rest
of the learning experience occurs either through the sociology of team learning or
from what a person abstracts on his own. The next step in realizing the educa
tional potential of the BUGGY game is to implement an intelligent tutor which
can recognize and point out weaknesses (or interesting facets) in a student's
debugging strategies.28 Our experiences indicate that such a tutor would be very
helpful for middle school and remedial students Who often get caught in unpro
ductive ruts. The tutor could also help focus the " student's attentidn on the
structure of the arithmetic procedu.-es themselves. It is worth ROting that some of
the tools for constructing an intelligent tutor for the BUGGY game already exist
in the form of the test validation techniques described in the previous section;
Nevertheless, these techniques do not provide the right kind of information for
explaining to a student why the problem he just generated had little or no diagnos
tic value. We are currently exploring the kind of reasoning required to answer
"why."

An intelligent tutor designed specifically to help teachers will profit from a
theory of what makes an underlying bug easy or difficult to diagnose. Simple
conjectures concerning the depth of the bug from the surface do not seem to
work, but more sophisticated measures might. It is hard to see how to predict the
degree of difficulty in diagnosing a particulm- bug without a precise
information·processrng or cognitive theory of how people ttctually formulate
conjectures about ttie underlying bug or cause of an error. For example, one such
theory is that people walk through their own algorithm, looking for places where
a: part of the incom!ct answer is different from their own and then try to imagine
local modifications to their algorithm that could account for the error. Under this
theory, one would expect bugs that involve major modification of the procedure,
such as chai1ging the direction in which columns are processed, to be difficult to
diagnose. Simi-rarly one would expect difficulty if a student's algorithm differs
from the diagnostician'S. Given an adequate" theory, the difficult situations can be
watched for and c'orrected through appropriate tutorial comments during diagnos
tic training.

2~As a histotical footnote', BUGGY was originally developed to explore the psychological validity
of the prOCedural network model lor complex procedural skills. During that investigation we realized
the pedagogic at potential of even this simple version of BUGGY as an instructional niedium.

26For examples of the types of tutoring, see Brown and Burton (1975, 1977), Carr and Goldstein
(1977). and Goldstein (19"74).

DIAGNOSTIC MODELS 187

Another extension to the BUGGY environment to encourage further explora
tion of the ideas of hypothesis formation and debugging is the development of a
specialized programming language for writing simple arithmetic procedures.
Actually having students write procedures provides immediate focus on debug
ging strategies-a topic usually left until the end in most secondary school
programming courses. In this limited environment, it should be possible to
construct an intelligent programming assistant as well as a computer-based tuto
rial helper that can aid a student when he gets stuck. Providing students with a
language in which they can write their own procedures also allows use of a game
developed in the SOPHIE environment (Brown, Rubinstein, & Burton, 1976),
where one student writes a procedure introducing a bug and another student tries
to discover it by presenting test problems.

Extensions to the Diagnostic System

Concerning the use of procedural networks as a tool for diagnosing real stu
dents, we reiterate that the capabilities of the present system are solely diagnos
tic: no tutoring is attempted. The issue of what tutorial strategy to use, even when
it is known exactly what a student is doing wrong, is still an open question.

One possible strategy is that the "expert" portion of the procedural network
could be made articulate in the sense of being able to explain and justify the
subprocedures it uses. Since the system would know the student's bug, special
problems can be chosen and special care can be taken while presenting the steps
which illustrate the student's bug. This feature could also be used to allow
students to pose their own problems to the system and obtain a running account
of the relevant procedures as the "expert" solves the problem. A useful notion
for the articulate expert may be to have additional explanation or justification of
each symbolic procedure in the network expressed in terms of a "physical"
procedure using manipulative tools such as Dienes' blocks (Dienes & Golding,
1970). In this way, the execution of each symbolic procedure could cause its
analogous physical procedure whose execution could be displayed on a graphics
device, thereby letting the student see the numeric or abstract computation unfold
in conjunction with a physical model of the computation. This approach directly
attacks the problem of getting procedures to take on "meaning" for a student: the
acquisition of meaning is, we believe, accomplished by recognizing mappings or
relations between the new procedures and existing procedures or experiences.

While we consider the articulation of the expert to have great promise as a
corrective tutorial strategy, it is by no means the only possible such strategy. It is
possible that with certain bugs (and certain students), a clear description of what
is going wrong may be sufficient to allow the student to correct his problem. Or it
may be possible to formulate a series of problems (possibly in conjunction with
physical models) that enables the student to discover his own error. Or it may be
best to abandon his algorithm (rather than trying to debug it) and start over with a
different, simpler algorithm to build the student's confidence.

188 BROWN AND BURTON

Generalization to Strategi~ Knowledge

Caution should be exercised in 'generalizing the procedural network model to
other procedural skills. In particular, the aspects of knowledge discussed here are
almost totally algorithmic in nature containing little heuristic or strategic knowl
edge in selecting or guiding the execution of the primitives (procedures). Many
mathematical skills involve an interplay between strategic and algorithmic
knowledge. For example, when adding two fractions, one does not necessarily
compute a common multiple by mUltiplying together the two denominators.
Instead, an examination is made of the relationships between the two de
nominators such as identity, obvious divisibility of one by the other, relative
primeness, and so on. On the basis of such relationships specialized procedures
are chosen for adding the given fractions. The rules underlying these decisions
can have their own bugs and, therefore, these rules must be modeled within some
representation scheme. Although procedural network schemes can represent such
decision rules, we believe that other schemes, based perhaps more on annotated
production rules (Goldstein & Grimson, 1977), deserve serious consideration.
We are currently investigating a hybrid approach for modeling fractions (and
their bugs) that involves merging annotated production rules with procedural
networks.

Psychol!Jgical Validity

An important area for exploration concerns the psychological validity of the
skill decomposition and buggy variants in the network. That is, how well do the
data structures and procedure calls in the network correspond to the structures
and skills that we expect people to learn? From the network designer's point of
view, the psychological validity can be improved or denigrated by choosing one
structural decomposition instead of another. Determining a psychologically
"correct" functional breakdown of a skill into its subskills is critical to the
behavior of gaming and diagnostic systems using it. If the breakdown of the skill
is not correct, common bugs may be difficult to model while those suggested by
the model may be judged by people to be "unrealistic". For people playing
BUGGY based on a nonvalid network, the relationship between its bugs and the
behavior they observe in people will often be obscure. Measuring the "correct
ness" of a particular network is a problematic issue as there are no clear tests of
validity. However, issues such as the ease or "naturalness" of inclusion of
newly discovered bugs and the appearance of combinations of bugs within a
breakdown can be investigated.

Finally, we have left open the entire issue of a semantic theory of how proce
dures are understood (and learned) by a person and why bugs arise in the first
place. The need for a theory of how procedures are learned correctly or incor
rectly is important for at least two reasons. First, an interesting theoretical
framework that accounts for the entire collection of empirically arrived at bugs
will undoubtedly provide insight into how to correct the teaching procedure that

DIAGNOSTIC MODELS 189

produced the bugs in the first place. Second, such a theory would be the next step
in a semantically based generative theory of student modeling. As we have stated
earlier, bugs have to be hand-coded into the network now. One can envision
generatively producing bugs by a set of syntactic transfonnations (additions,
deletions, transpositions, etc.) based on some appropriate representation lan
guage. While some bugs can be naturally accounted for as "syntactic" bugs,
others, such as inappropriate analogy from other operations or incorrect generali
zation from examples, are best explained outside of the representation itself and
hence require a "semantic" theory. One of the by-products of the diagnosis of
the student data mentioned in the previous section has been a thorough and
precise catalogue of bugs arising in one particular skill, subtraction. This net
wor" can now be used to suggest and evaluate theories about the origin of bugs.

APPENDIX I: STUDENT RESPONSES TO BUGGY

In an experiment described in Section 2, a group of student teachers were ex
posed to the BUGGY game. This appendix provides a list of responses to the
question. "What do you think you' learned from this experience?"

I see from this system that you learn from your mistakes. In a certain operation
there are so many mistakes that you can make. When you learn what the mistakes
are you learn to do the operation correctly.

That children's errors can be a way of diagnosing the way the child learns
material. Also it raises questions about the way a child is tested both standardized
and infonnally.

A student's errors and/or misunderstanding of a concept may have not been
due to carelessness but rather involved a complex and logical thought process ..

I learned that it is necessary to try many different types of examples to be sure
that a child really understands. Different types of difficulties arise with different
problems.

Although it's hard to tell from these pre- and posttests, in the middle is learned
a great deal about the complexity of student's errors. I know that young students
can get these preconceived notions about how to do things and it's very hard to
find a pattern to their errors though it exists and I believe that BUGGY convinced
me of [it].

That if you study the errors long enough you can eventually come up with a
reasonable solution as to why the [error] is occurring.

Through looking carefully at children's math errors it is sometimes possible to
discover a pattern to them. This pattern will tell you an area or a concept the child
does not understand.

I learned that there could be more to a child's mistakes other than carelessness.
Working with children with special needs I have encountered many such prob
lems, yet never stopped to analyze what could be a systematic problem-for this
I thank you.

.~.

1-90 BROWN AND BURTON

Children do have problems and they are very difficult to spot especially when a
number of different operations are used to come to an answer. I've learned to be
more aware of how these children reach these "answers" and to help them to
correct them; first by knowing how they arrived at the answer.

Although many arithmetic errors may be careless, there may also be a pattern .
that the kid is locked into. If you pick up on a pattern you can test the child to see
if he/sbe conforms to it and work on it from there.

I found that I have looked closer at the problems, looking for a relationship
between the set after working with BUGGY.

How to perceive problems, that don't look too consistent, a little easier.
I learned and was exposed to the many different types of problems children

might have. I never realized the many different ways a child could devise to
create his own system to do a problem. I am now aware of problems that could
arise and I'm sure this will help me [in] my future career as a teacher.

How to more effectively detect "problems" students have with place value.
I have learned several new possible errors students may make in computation.

I have also learned somewhat how to diagnose these errors, i.e., what to look for,
and how specific errors can be.

I learned about diagnosing math difficulties. It makes me aware of problems
that children have, and they sometimes think logically, not carelessly as some
times teachers think they do.

That there are many problems that you can diagnose about a child by looking
at his homework.

If a child has repeatedly made [the] same mistakes, it is more easily identified
if the teacher has an opportunity to try and make [the] same mistakes. This
method can be solved at least quicker than ...

Tuned in to picking up malfunctions in simple addition and subtraction which
seemed to be realistic problems.

ACKNOWLEDGMENTS

We are especially indebted to Kathy M. Larkin for her extensive assistance on this project and in
particular for her contribution in refining the BUGGY activity and in discovering many new arithme
tic "bugs. to

REFERENCES

Barr. A. A rationale and description of the BASIC instructional program. Psychology and Education
Series. Stanford University. Technical Report 228, April 1974.

Brown. J. S. Structural models of a student's knowledge and inferential processes. BBN Proposal
No. P74-CSC-IO, Bolt Beranek and Newman, Cambridge, Massachusetts, April 1974.

Brown, J. S., & Burton, R. R. Systematic understanding synthesis, analysis, and contingent knowl-

DIAGNOSTIC MODELS 191

edge in specialized understanding systems. In D. Boprow & A. Collins (Eds.), Representation
and understanding: Studies in cognitive science. New York: Academic Press, 1975.

Brown, J. S., & Burton, R. R. A paradigmatic example of an artificially intelligent instructional
system. Presented at the First International Conference on Applied General Systems Research:
Recent Developments and Trends, Binghamton, New York, AU8!Jst 1977.

Brown, J. S. , Collins, A." & Harris , G. Artificial intelligence and leaming strategies. To appear in
H. F. O'Neil (Ed.), !tearning strategies. New York: Academic Pre~~, 1978, in press.

Brown! J. S., Rubinstein, R. , & Burton, R. R. Reactive le4lrrling environment for computer assisted
el!=~tronics instruction. BBN Report No. 3314, A. I. Report No. I, Bolt Beranek and Newman,
CfIDlbridge, Massachuset'~, October 1976.

Brown,). S., Burton, R. R., Hi:lusmann, C., Goldstein, I., Huggins, B., & Miller, M. Asp~cts of a
theory for automated stude~t modelling. BBN ~eport No. 3549. ICAI Report No. 4. Bolt
Beranek and Newman, CalJ\!>ridge, Massachusetts, M~y 1977.

Burton, R. R., & Brown, J . S. Semantic grammar: A techn~~!1e for constructing natural language
interfaces to instructional systems. BBN Report No. 3587, ICAI Report No.5, Bolt Beranek
and Newman, Cambridge, Massachusetts, May 1977.

Burton, R. R. t & Brown, J. S. A tutoring and student modeling paradigm for gaming environments.
In Proceedings of the Symposium on Computer Science and Education, Anaheim, California,
February 1976. .

Carbonell, J., & COm~$, A. Natural semantics in 3Clificial intelligence. In Proce!dings of the Third
International Jeitj! Conference on Artificiall~telligence, Stanford University, 1973.

Carr, B;, & Goldstein, I. Overlays: A theory of modeling for computer aided' instruction. Mas
sqchusetts Institute of Technology, AI Memo 406, February 1977.

, Collins, A., Warnock, E., & Passafiume, J. Analysis and synthesis of tutorial dialogues. In G. H.
Bower (Ed.>, The psychology of learning and motivation, Vol. 9 . New York: Academic Press,

1975.
Cox, L. S. Systematic errors in the four vertical algorithms in normal and handicapped populations.

!ol,frnalfor Research in Mathematics Education. 1975, 6, 202-~20.
Dien~., 1-. P., & Golding, E. W.Learnin~ logic. logical games. New '(ork: Herder & Herder, 1970.
Easiey, J, A., Jr., & Zwoyer, R. E. Te{IChing by listening - toward a new day in math classes.

Contemporary Education. 1975.47, 19- 25.
Friend, J. Description of items to be used in ~ditionlsubtraction tests. Inte~al Memo, Institute for

Mathematical Studies in the Social Sciences, Stanford University, 1976.
Goldstein, I. Understanding simple picture programs. Massachusetts InstittJte of Technology, AI

Labo~tory, Technical Report 294, Sept~mber 1974.
Goldstein, I. The computer 1lS coach: An athletic paradigm for intellectual education. Massachusetts

Institute of Technology. AI Memo 389, February 1977.
Goldstein, 1., & Grimson, E. Annotated production systems. A model for skill acquisition. Proceed

ings of the Seventh Internq!ipnal Jo;nt Conference on Artificial Intelligence. August 1977.
Krauss. R. M .• & Glucksberg, S. Social and nonsocial spee~Jt. SCientific American. 1977,236,

I<»=fos:
Malz, M. Some issues on building an Articulate Expert for high school algebra. BBN Report, ICAI

to (in preparation), 1978.
Miller, M., & Goldstein, I. Overview of a linguistic theory of design. Massachusetts Institute of

Technology, AI Memo 383, December 1976.
Rich, C., & ~chrobe, H. E. Initial report on a LISP programmer's apprentice. Massachusetts Institute

of Tecbnology, AI~TR-354, December 1 91§.
Rubin, A. Hypothesis formation and evaluation in medical diagnosis. Massachl,lsetts Institute of

Techfwlogy, Artificial Intelligence Laborat()ry. AI-TR-316, January 1975.
Sacerdoti, ~. A structure for plans and behavior. The Artificial Intelligence Series. New York:

Elsevie.r North-Holland, J977.

192 BROWN AND BURTON

Searle. B .• Friend. J .• & Suppes. P. The radio mathematics project: Nicaragua 1974-1975. Institute
for Mathematical Studies in the Social Sciences. Stanford University. 1976.

Self, J. A. Student models in computer-aided instruction. International Journal of Man-Machine
Studies, 1974, 6, 261-276.

Smith, M. J .• & Sleeman, D. H. APRIL: A tlexible production rule interpreter. SIGART Newsletter
No. 63, June 1977.

West, T. Diagnosing pupil errors: looking for patterns. The Arithmetic Teacher. 1971.64.
Young, R. M. Mixtures of strategies in structurally adaptive production systems: Examples from

seriation and subtraction. SIGART Newsletter No. 63, June 1977.

