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Abstract 

Diagnosing bugs in a simple procedural skill 
Richard R. Burton 

To account for student errors in simple procedural skills, Brown and Burton (1978), proposed 

"the Buggy model." In the model, a student's errors are seen as symptoms of a "bug," a 

discrete modification to the correct skills which effectively duplicates the student's behavior. 

This paper describes an operational diagnostic system based on the Buggy model that has 

been used with several thousand students over the last two years to find systematic errors in 

the domain of place-value subtraction. Subtraction is used as a paradigmatic case for 

studying diagnosis; simple enough that it is possible to diagnose real students and complex 

enough to provide an interesting case study of the subtleties of diagnosing students in a 

natural setting. 

A brief overview of the Buggy model and a framework for diagnostic systems using the 

model is presented_ This provides both a framework for understanding the final diagnostic 

system and an appreciation of the subtleties of diagnosis. The complicating factors in 

diagnosis are presented and solutions to some · of the complications are discussed. 

Two diagnu':;(Ic systems are described; one for dealing with standard tests and one for 

interactive diagnosis; The problems particular to each type of diagnosis are examined. 

A definition of "subskill" (what a student must know to perform a sl~ill) is derived from the 

set of observed bugs. Some uses of subskills are described and all of the subskills of 

subtraction are given. 

To appear in Intelligent Tutoring Systems, Sleeman, Derek and Brown, John Seely, eds., Academic Press, 1981. 
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1.0 Introduction 

Diagnosing bugs in a simple procedural skill 
Richard R. Burton 

To account for student errors in simple procedural skills, Brown and Burton (1978), proposed "the 

Buggy model." In the model, a student's errors are seen as symptoms of a "bug," a discrete 

modification to the correct skills which effectively duplicate the student's behavior. As an example, 

consider the following two errors made by a student in the procedural task of subtraction: 

500 
-65 
565 

312 
-243 
149 

Both errors are accounted for by the bug named O-n = n. (Footnote: Bug names appear in bold type.) The 

student is using a modification to the subtraction procedure which dictates that when the top digit 

in a column is 0, write the bottom digit as the answer for that column. Modifications may be the 

result of deleting part of the correct procedure, of adding incorrect sub-procedures, or of replacing 

correct subprocedures by incorrect ones. 

This chapter describes an operational system based on the Buggy model that has been used with 

several thousand students over the last two years to diagnose systematic errors in the. domain of 

place-value subtraction. For the purposes of this chapter, subtraction is used as a paradigmatic case 

for studying diagnosis. Subtraction is simple enough that it is possible to diagnose real students in a 

natural setting and complex enough to provide an interesting case study of the subtletie~_ involved. 

Initially the diagnostic system had a fixed, prespecified set of bugs, and it. simply chose those bugs 

that maximally accounted for the student's behavior. As the range of erroneous behaviors to be 

diagnosed expanded, the space of possibilities became too large for these exhaustive search 

techniques. Also, many students have subtle variations of the 'taught' methods, make careless 

mistakes while following their correct or faulty procedures, and switch back and forth between old 

and recently-learned procedures. All of these factors complicate the diagnostic process and set the 

stage for the system to be described in this paper. 

The first section presents a brief overview of the Buggy model and characterizes what we mean by 

diagnosis. Then the framework for diagnostic systems is presented using a simple system as an 

example. This provides both a framework for understanding the final diagnostic system and an 

appreciation of the subtleties of diagnosis. 
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The second section describes the complicating factors in diagnosis and indicates why the simple 

system must be extended. This discussion also mentions solutions to some of the complications. 

The third section describes the diagnostic system that is used when students are given a pre­

specified test and the methods for dealing with the complications. The interactions between the 

heuristics of the system and the items on the test are examined. An interactive version of the 

diagnostic system is presented and the areas of problem generation and logical equivalence are 

considered. 

The fourth section presents a definition of "subskill" (what a student must know to perform a skill) 

that is derived from the set of observed bugs. Some uses of subskills are described and an example 

of each of the subskills of subtraction is given. 

1.1 Procedural Network Model 

When we set out to explain the causes of observed student errors, we knew a representation was 

required, but we did not know how complex the representation would need to be. We did not 

know what primitives or control structures would be appropriate so, in an attempt to avoid having 

our language shape the way we saw the data, we chose a representation language which allowed us 

freedom to capture each newly observed set of student errors in the way that seemed most 

appropriate to those errors. Thus our initial representation scheme was ad hoc by design. 

The· representation scheme distinguishes between goals and methods for satisfying those goals. For 

each goal there is a correct method of achieving that goal and, optionally, alternative correct 

methods and alternative incorrect or "buggy" methods. Methods are written in a stylized subset of 

the programming language Lisp. The most frequent construct in the implementation of the 

methods is a call for other goals to be satisfied (Le., breaking a goal down into subgoals). This led 

to the fonnation of "procedural networks" (Sacerdoti, 1977) which represent the goal-calling 

structure, the associated conditionals, the primitives and other information about the intention of the 

procedures along with diagnostic suggestions. All this information is represented in the form of a 

network. The network, however, is not meant to be a cognitive construct, but simply a framework 

for relevant pieces of info1ll1ation. 

The observed data is represented in the network as procedures (methods and their variants) which 

mimic the behaviors of the students. To guarantee some generality (so that not every student could 

be hypothesized as having a different ·bug unrelated to any other bug or ~o the correct skill) the 

representation scheme was constrained in two ways. First, if a student was executing part of the 

procedural task correctly, the scheme's representation of that part of the student's behavior had to 

be the same as it was for a correct student A bug, in other words, must be the least possible 

variant of the correct skill that mimics the behavior. 



The second constraint was to distinguish between primitive and compound bugs. If we found a 

student who had behavior A and another who. had behavior B and a third whose behavior was the 

combination of A and B, then this third behavior must be modelled in the representation as the 

composition of the bug A with the bug B. These two constraints led to numerous reworkings of the 

decomposition of the skill into subskills. 

Footnote: From a psychological point of view, the procedural network representation is a descriptive tool. In particular. 

we are not proposing the procedural network as an alternative to, for example. the class of production rule models which 

try to model internal mental processes of the level of working memory. Our goal is to characterize the entire class of 

data we observe in a form that facilitates comparing descriptions of the data without worrying about underlying 

mechanisms. It seemed premature to focus on the possible mechanisms of a particularly well-formed subset of the data 

without first characterizing the entire range of phenomena 

1.2 Diagnosis 

There are many possible meanings of the term diagnosis, many different methods of testing or 

determining a diagnosis, and many different purposes to which diagnoses are applied. (Diagnosis is 

often referred to in some work as developing a model of the student.) We shall discuss the range 

of possible meanings and choose the one most pertinent to our work. The dimension of this range is 

a measure of the depth of understanding of what the student is doing. 

The simplest level of diagnosis is determining whether or not a student has mastered a skill, and 

possibly the degree of mastery, represented by a numeric value. This level of diagnosis is not 

particularly useful for remediation, since one does not have any idea what parts of the skill need 

more work. It is interesting to note that without a model of the skill being tested, even determining 

that the student possesses the skill is hard. A student may have an almost arbitrarily complex 

perversion of the skill and produce the right answers for most typical problems. But without a good 

model, it is difficult to determine how much the boundary conditions of the skill have been 

stressed. If a test includes only examples that the student gets right, it will always be concluded that 

s/he has mastered the skill. Footnote: Usually the determination of what problems to include (Le., what possible 

mislearnings are detected by the test) is left to test-makers' intuitions of the kinds of mistakes they have seen other 

students make. A model of the procedural skill can provide insight into what the possible ways of mislearning a skill are 

and thus aid in the creation of diagnostic tests. 

A more complicated level of diagnosis is determining what subskills the student has not mastered 

(Friend, 1980). This technique has useful applications for both remediation and coaching/tutoring. 

The WEST coaching system (nAn investigation of computer coaching for informal learning 

activities," Burton and Brown, this volume) presents a system that determines which subskills a 

student does not know and uses that information to provide and control tutorial feedback. This 

level of diagnosis has its own set of problems that will not be touched upon until Section 4.3, in 

which a theoretical basis for formalizing the notion of subskills will be advanced. 

3 
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The level of diagnosis appropriate for this paper is determining what internalized set of incorrect 

instl1lctions or rules gives results equal to the student's results. That is, we require of a dingnosis 

that it be able to predict, not only whether the answer will be incorrect, but the exact digits of the 

incorrect answer on a novel problem. This means having a model of the student that replicates 

behavior on the problems observed so far and that predicts behavior on problems not yet done. It is 

clear that we require a model of the student's encoded skill to be sufficiently complete that it can 

be executed on new problems. 

A usage of the term diagnosis that is still more specific than tlle above is to determine what has 

caused the student to develop his incorrect procedures. At present, diagnoses at this level are not 

very well understood and are beyond the scope of this paper. Brown and VanLehn (1980) have 

develored a principled theory that explains many of the observed bugs. 

1.3 Framework for the Diagnostic Process 

In the next section we describe some of the complexities that a diagnostic system faces with real 

students. We begin by introducing, and exploring the shOltcomings of, a simple prototypical system 

for diagnosing idealized student behavior using an executable model of the possible bugs. We shall 

direct our discussion by way of examples in subtraction. Many of these complications occur in 

other domains, but subtraction provides a particularly clear illustration of the problems. 

/.3./ A core but overly simple system: Naive Diagnostic System: 

The leverage provided by the procedural network model is an efficient means for predicting the 

answer to any problem from any bug. The Naive Diagnostic System compares the student'S 

answers with the output of each bug run through the test and picks the one bug that gives the same 

answers as the student. (We will later discuss why there might not be exactly one.) Since there are 

only about a hundred and ten primitive bugs for subtraction (that we have identified so far), the 

computation is not overwhelming. 

Figure 1 presents a sample "diagnostic table" that might arise from such a system for an idealized 

student The diagnostic table provides a summary of how well a bug matches the student's 

responses on the given set of problems. The test problems with the correct answers appear at the 

top of the table. The student's answers appear on the next line using the convention that .. +" 
indicates a correct student answer. Each of the remaining pairs of lines provide the name of a bug 

and the answers produced by it under the assumption that the student had this and only this bug. 

For each of these lines a .. "''''''''' means that the bug predicted the student's incorrect answer. A""''' 

means that the bug in that row would give the correct answer and also that the student got the 

correct answer. Thus .. "''' and """"*" indicate agreement between the student's behavior and the 

predicted behavior of the bug, and positive evidence that the student has that bug. Negative 



evidence is portrayed in two ways: A "!" means that the bug in that row predicts the correct answer 

but the student gave a wrong answer. The number predicted by the bug is shown if it disagrees with 

both the student's and the correct answers. 

Figure 1 shows a student who has the bug mentioned in the introduction, O-n=n. Also shown is 

the entry for the bug "the smaller digit in each column is subtracted from the larger regardless of 

which is on top" (called smaller from larger.) This bug generates the same answer as the student on 

the fourth problem but is not an acceptable diagnosis because a diagnosis must account for the 

entire set of student behavior. 

Figure 1 
Student diagnostic table with bug O-n=n. 

Problems and Correct Answers 

45 40 139 500 312 
-23 -30 - 43 - 65 -243 

22 10 96 435 69 
Student Answers: 

+ + + 565 149 
O-n = n: 

* * * *** *** 
smaller from larger: 

* * 116 *.* 131 

.*. - bug predicts student's incorrect answer 
• - bug predicts student's correct answer 

- bug predicts the correct answer, student's answer incorrect answer 
+ - student's answer is correct 

This diagnostic system can go wrong in two ways: there may be more than one bug that exactly 

matches every answer given by the student; or there may be no bug at all that matches. If there is 

more tllan one bug and the system is interactive, it can attempt to generate a new problem for the 

student so that it can distinguish between the bugs. (Finding such a problem can often be 

extremely difficult, as will be discussed in section 3.3.2.) If the student is not on-line (as is the case 

with standardized tests), the test given the student must be redesigned. Footnote: There are two 

properties that the test must have in order to prevent such ambiguous diagnoses from arising. One is to have, for each 

of the hundred bugs, at least one problem which causes a symptom for each bug. In the case that the student has only 

one bug, this bug can thus be distinguished from the correct procedure. The second property the test must have is to 

contain problems that distinguish between any two of the hundred bugs. For example if the test in Figure 1 included 

neither the third problem nor the fifth problem, it could not be determined whether the student had O-n=n or smaller 

from larger. This does not mean that a diagnostic test need contain several hundred problem. Problems can be 

generated which test more than one bug at a time, producing distinct incorrect answers. For example, the tests we use in 

our data collection have these properties and contain only 20 problems. The problem of test construction will be 

addressed later. 
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The second way the simple diagnostic algorithm can go wrong is by having the student's behavior 

not emulated by any bug. In these cases, no bugs match all of the student's answers. With real 

students, there are many ways that this can happen. We will continue by examining some of them. 

2.0 Complicating Factors in Diagnosis 

2.1 Performance lapses: 

The diagnostic situation is complicated by the fact that students sometimes really do make mistakes 

from fatigue, laziness, boredom, or inattention. This happens while they are following a buggy 

procedqre as well as while they are following a correct one. A closely related problem is that 

students sometimes do things for reasons that are beyond the limits of the theory being used to 

determine consistency. For example, they may copy some answers from their neighbors or get 

digits for their answers from nearby problems. This brings into question the notion of a consistent 

error: A student who always makes the rightmost digit in the answer be the same as the date is 
being completely consistent in a sense we have not included in our database. Consistency in the 

sense that we use it implies that the student will always give the same answer to the same problem 

and that the answer is completely determined by the problem alone. 

To be of practical use, a system must find a student's systematic en'ors even in those cases where 

some non-systematic errors are present This means that the diagnostic system cannot insist on 

exact matches between its proposed bugs and the student's behavior. The system must find the best 

match and then decide if it is really good enough to be a diagnosis. One major ramification of this 
fact is that hypotheses about a student's bug can not be rejected with the first piece of evidence to 

the contrary. This mles out a major class of diagnostic techniques which use problems that very 

few hypotheses explain to quickly reduce the space of possibilities. 

I 



2.2 Errors in primitive subskills: 

Another source of inconsistency, or "noise" as we shall refer to it, is that specialized subskiUs that 

are assumed to be primitive in the model may, in fact, have errors. This can be seen in subtraction 

in the fonn of errors in the standard subtraction facts table such ~ 13-7 = 8. One "solution" to this 

problem is to consider each fact to be a separate subskill and to consider all of the possible values 

of, for example, 13-7 except 6 as being bugs. Footnote: Alternativel¥. one could postulate a model for doing 

"facts" and include this in the model of subtraction. One has then just pushed me problem down a level by assuming a 

different level of primitives which might themselves not be completely correct. This approach . has several 

problems. It is not applicable in the common case where facts table errors are not consistent. It is 

unconfirmable in practice because a typical test of 20 items requireS about 60 subtraction facts to be 

used. Since there are 100 subtraction facts, not every fact can be tned once, much less enough times 

to determine consistency. This solution also has the drawback that almost any answer can be 

"explained" as a compounding of facts table errors which could llwamp the diagnostic system with 

complex alternative theories. 

2.3 Subskill variants: 

Another source of noise is that repeated drilling on parts of the skill can lead to variants of the 

"standard" algorithm that cause the student to do correctly parts of problems that the bug predicts 

he would miss. For example, ten is learned as one of the subtraction facts by repeatedly solving 

exercises of the form 10-y. Based on this experience, students sometimes perceive the leftmost one 

and zero digits of a number (e.g., 1093) as being the single "digit" ten rather than as two digits, 

hence hiding cases where a bug such as O-n = 0 might otherwise arise. Another example arises 

because students are drilled on two-column problems requiring borrowing-the): will often know 

how to borrow correctly in the units column of a problem but have a bug in the borrowing 

procedure in the remaining columns. 

2.4 Compound Bugs: 

Students often have mis1earned more than part of the skill, and thus have a combination, or 

compound, of two or more primitive bugs. In a recent exp,eriment with approximately one 

thousand third, fourth and fifth grade students, thirty-seven percent of the diagnoses were 

compound bugs (VanLehn, 1981). A straightforward way for the simple system to diagnose these 

students is for it to consider subsets of primitive bugs up to some cardinality. We have observed 

students with as many as four bugs in a single skill (see figure 2). With 110 pdmitive bugs, this 

leads quickly to more hypotheses than can be feasibly examined (approximately 108) by exhaustive 

search. For the remainder of this section we explore heuristics to reduce the space of bugs, and 

describe the heudstics for searching the reduced space efficiently. 

7 
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Figu re 2 

Student diagnostic table with a compound bug 

31 53 23 2003 203 1043 520 10214 909 10300 70001 
-11 -20 -8 - 24 -109 -505 -467 -8375 -458 - 546 - 391 
20 33 15 1979 ~ 538 ~ 1839 451 9754 69610 

Student Answers: 

+ 30 5 1 106 2 140 161 , 501 200 0 

smaller from larger & O-n = 0 & n-O = 0 & stop working when the bottom number 
runs out: 

• ••• ••• ••• ••• • •• ••• ••• • •• • •• • •• 
n-O = 0: 
• ••• 4 508 

stop working when the bottom digit becomes a blank: 
• I ••• 79 I I I I 754 610 

smaller from larger: 
• I 25 2021 ••• 1542 147 18161 551 10246 70390 

O-n = 0: 
• I 1038 60 1909 ..... 9800 70000 

Diagnosis: a consistent bug = {smaller from larger & O-n=O & n-O=O & stop 
working when the bottom number runs out} . 

••• - bug predicts student's incorrect answer 
• - bug predicts student's correct answer 

- bug predicts the correct answer, student's answer incorr.ct answer 
+ - student's answer is correct 

The diagnosis is a compound of the bugs smaller from larger, O-n=O, n-O=O and 
stop working on a problem wht1n the bottom number runs out. The evidence for 
and against the individual primitive bugs is also included. 

2.4.1 Reducing the space of compound bugs: 

Many of the arbitrary compound bugs, or compounds, will be logically equivalent in the sense of 
producing the same behavior. If only one member of each class of logically equivalent compounds 

is examined, the search space is reduced. 

One grouping that suggests itself is to ignore the order of the bugs within the compound; so that 

the compound of bug A with bug B, denoted as {A B}, is the same as the compound of bug B with 

bug A, {B A}. This can easily be accomplished by canonicalizing the compounds, for example, by 

alphabetizing the component letters. There is, however, a useful interpretation that suggests itself 

for the difference between {A B} and {B A}; that being whether the correct model was perturbed 

by bug B then the result perturbed by bug A or vice-versa. Under this interpretation, the ordering 

indicates the order of perturbation in the model. (This is analogous to the decision in a production 



system of the order in which rules A and B are tried.) In many cases the bugs are independent so 

that the order of perturbation makes no difference. But independence is not always the case. In 

some cases, the preconditions of one of the bugs can subsume the preconditions of the other, 

preventing it frum ever being tried. For these cases, the standardization must put bugs in order of 

decreasing specificity. For example" the bug O-n=O would be ordered before smaller from larger. 

Another observation about grouping compound bugs into equivalence classes is that some bugs 

"hide" other bugs in the sense of preventing their preconditions from ever being met. In these 

cases, {A} is logically equivalent to {A B}. For example, the bug smaller from larger will hide any 

bug in the borrowing procedures so that their compound will be equivalent to smaller from larger 

alone. This is because smaller from larger redefines the column subtracting procedure so that it 

never needs to borrow; any bug that has trying to borrow as one of its preconditions will never be 

tried. 

Canonicalization fails entirely in a few cases where bugs have overlapping preconditions which 

prevents there from being a single "right" order. Two orderings may be different from each other 

and different from any of their subsets. For example, the bug when borrowing from a column in 

which the top and bottom digits are the same, borrow from the next column to the left instead and 

the bug when borrowing from a column with a zero as the top digit, change it to a 9 and return have 

preconditions that overlap in problems requiring a borrow in a column which has zero over zero 

(e.g., 305-108). Thus {A B} is actually different from the bug {B A}; the first gets 107 for the 

answer while the second gets 297. Our representation makes the distinction between these two bugs 

so that both are representable. Footnote: The diagnostic compounding mechanisms use a canonical ordering 

routine so that this difference would not be "discovered" by the system itself. (This problem presents itself in 

production system fOlmalisms in the form of ordering of rules in the rule set. One consequence of 

this for diagnostic systems based on such production rules is that their diagnosis must, in some 

cases, include not only what the buggy rules are but also how they are ordered.) 

There arc also cases in which different combinations of bugs are the same (generate the same results 

on all problems) even though they are made from different primitives and can not be grouped for 

any principled reason. These cases are rare but do necessitate that the system be able to deal with 

multiple diagnoses. This also creates the additional annoyance that after determining that two bugs 

are the same, the system must then decide which is a more appropriate label for the diagnosis. 

2.4.2 Heuristics 10 limit the search: 

While the number of hypotheses to be searched is greatly reduced by embedding knowledge about 

hiding and canonical ordering, the space is still too large to search exhaustively. One standard 

approach to limiting combinatorial search is to search only those compound theories for which there 

exists support in the data (a variant of "bottom-up" searching). The system limits its search to only 

9 
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combining primitive bugs for which evidence has been found. For this approach to sllcceed in 

finding a compound bug {A B}, there must be evidence for A and B separately. We will address 

the ramifcations of this limitation and methods for circumventing thcm in a later section. 

Care must be taken when searching the space of compounds because primitive bugs do not always 

combine in simple ways. There are situations in which a bug will interfere with another bug in 

such a way as to cause the student to get the right answer on problems where one of the bugs 

would predict the occurrence of a wrong answer. For example, on the problem 313-208, a student 

who has both the smaller from larger bug and the n-O=O bug will get the right answcr, 105. A 

student with the smaller from larger bug only will get 115. This has the important ramification for 

the diagnostic system that it cannot eliminate a hypothesis just because it predicts that the student 

would miss a problem that he gets right. 

Another complexity of bug combination is that two bugs that generate the same answers on all 

problems can each combine with the same third bug and generate different behavior. Two bugs 

generating the same behavior occur in the situation of needing to borrow from a column which has 

a zero on top. One bug increments the zero to one instead of decrementing it {A} and the other 

bug decrements the bottom digit instead of the top {B}. Whcn each of these bugs is compounded 

with the bug O·n=n {C}, however, we get different behavior. In the problcm 304-159, the first bug 

compound {A C} will get 165 for an answer (because incrementing the zero has disabled the o-n 

condition), while the second bug compound {B C} will get 245. Footnote: The situation here is actually 

slightly more complicated. The two bugs actually can be distinguished in the case where the digit below the zero is also 

zero or blank. In this case, the bottom zero can not be decremented. However, if each of tlle bugs is compounded with 

the bug ignore columns in which there is a zero on top and a zero or a blank on the bottom {D}, the compounds {A 

D} and {B D} are equivalent When tl1ese compounds are compounded with O-n=n, the resulting triples {A C D} and 

{B C D} are distinguishable again. 

Allowing bugs in an executable model to be arbitrarily combined may result in the implementation 

problem of loops. For example, if the primitive bug of moving from left to rigllt instead of right to 

left is not implemented very carefully, it can loop when combined with a bug in .the recursive 

borrowing procedure that has built into it the notion of moving from light to left. These problems. 

once discovered, can be overcome by reimplementing the offending bugs. 



3.0 The DEBUGGY Diagnostic System 

3 . .1 Method of diagnosis 

In this section we will describe an extension of the Naive Diagnostic System. First we consider the 
off-line version, called DEBUGGY, then the interactive version, called IDEBUGGY. From each 
student the system has the answers for every problem on the test (and the test problems 
themselves). At a high level, DEBUGGY compares the student's answers with results of the 
primitive bugs, looks for combinations of the bugs that compare favorably, tries to explain the noise 
in the resulting set of compound bugs, and then chooses the best and decides if it is good enough 
to be a diagnosis. The details of these steps are discussed below. 

3.1.1 Fonning the initial hypothesis s"t: 

DEBUGGY begins by considering a fixed set of hypotheses that includes all of the primitive bugs 
and roughly 20 common compound bugs. (See Friend and Burton (1981) for a description of the 
no primitive bugs.) The results of all 130 bugs arc compared with the student's answers. This 
comparison is used to determine the subset of the known bugs which will become the initial 
hypothesis set. The bugs in this subset form the basis for the compounding heuristics. The initial 
hypothesis set contains any bug that explains at least one of the student's wrong answers, and has 
what we refer to as full-problem evidence, meaning each has correctly predicted the student'S wrong 
answer on at least one problem. 

An alternative to full-problem evidence for inclusion in the initial hypothesis set is single column 
evidence which explains only a single incorrect column of the student's answer. For example, 0-
n = 0 has single-column evidence in the problem 303-218 = 105 because it explains the ten's column. 
A full-problem evidence scheme is used because it is efficient to obtain and is very constraining on 
the set of bugs. The latter is crucial since the search space grows rapidly with the number of 
primitive bugs considered for compounding. 

There are two possible advantages to a single-column evidence scheme: theories can be ruled out 
quickly (by having to look at only the first column rather than the whole problem to find out that a 
hypothesis is not correct); and better candidates for 'compounding can be found (because the 
candidate only has to exhibit itself in a single column rather than in the whole problem). The first 
advantage is offset by the efficiency of the procedural network representation; complete answers can 
be provided fast enough that time is not an issue. Even if a single-column evidence scheme were 
used, full-problem information would still be needed to check for interactions and determine the 
consistency of local column theories across the whole problem. Thus, DEBUGGY uses full­
problem evidence to constrain its initial hypothesis set. The second advantage is counteracted by 
the fact that, while single-column evidence does find more candidates for compounding, many of 
them arc spurious. We will later discuss the use of single-column evidence to extend the initial set 
of hypotheses as needed. 

11 
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3.1.2 Reducing the initial hypothesis set: 

The elements of the initial hypothesis set (bugs that completely explain at least one erroneous 

student answer) are combined to generate additional hypotheses particular to the student. Thus, the 

space of hypotheses considered for a student is limited to the powerset (set of all subsets) of the 

initial hypothesis set Even this limited space is often too large to search exhaustively (not 

infrequently the full-problem evidence set contains around 20 bugs, leading to 204 hypotheses); so 

attempts are made to reduce the initial hypothesis set before looking for compounds. 

Some bugs appear in the full-problem evidence set because they agree coincidentally with a student 

answer actually caused by a different bug. For example on the problem 700-5, the bug adding 

instead of subtracting will give the same answer as the bug slllaller from larger. If this problem is 

the only piece of evidence for adding instead of subtracting, and if there is other evidence for 

smaller from larger, adding will be removed at this stage, saving the system the necessity of 

exploring all compounds containing adding as one of the constituents. Another reason primitive 

bugs in the initial hypothesis set mar not be good candidates for compounding is that some are 

specializations of other bugs; if a student has a general bug, many of their answers will agree in 

places with its specializations. For example, smaller from larger is more general than o-n = n. If a 

student is following smaller from larger, some answers will be explainable by O-n=n. The 

subsumption heuristic will discard O-n=n in this situation. 

The initial hypothesis set is reduced by finding and removing primitive bugs that are completely 

subsumed by other primitive bugs. A strict definition of subsumption is used because it is possible 

to remove a bug which should he one constituent of the final compound theory. The subsumption 

process considers all of the problems on the test before removing a bug. For this process, there are 

three classes of predictions by the bug. Ordered in terms of value, or "goodness," they are: (1) 

those that agree with the student's answer, (2) those that predict the correct answer when the 

student's answer is incorrect, and (3) those that predict a wrong answer different from the answer 

the student gave. For a bug A to be removed, there must exist another bug B such that A is the 

same or worse on every answer, and worse on at least one, than B. In particular, a bug will be kept 

if that bug predicts the right answer when the possible subsuming bug predicts a wrong answer. 

These retained bugs are more likely to compound well because the problems for which they predict 

the correct answer represent situations wherein they do not apply. Hence they would not interfere 

with other bugs that do explain the behavior. 

I 
1 

, 
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3.1.3 Compounding the hypothesis set: 

Pairs of bugs in the reduced full-problem evidence set are formed and the resulting compound 

hypotheses are compared with the student's answers. If the compound explains more of the 

student's behavior than either of its constituent hypotheses, the compound is added to the set of 

hypotheses. 

Any new compounds are paired with the existing hypotheses so that all subsets of bugs will be 

considered. There is a limit (currently 4) to how many primitives are allowed in a compound; 

compounds with more than this number of constituents are rejected. As an efficiency consideration, 

information stored in the network indicates which bugs hide which other bugs or subprocedures. 

For example, a link from the bug smaller from larger to the procedures for borrowing is used to 

store the ' fact that this bug will prevent borrowing from ever occurring. Such links are examined 

when a compound is first considered so that any attempt to compound smaller from larger with any 

bug of the borrowing procedures will be rejected immediately. 

This "hill-climbing" algorithm which needs independent reasons for belief in each of the pieces is 

very efficient, but occasionally misses a bug because it is not one of the considered hypotheses. In 

some cases, one of the bugs in the compound will completely cover the symptomatic cases for the 

other, making it impossible to get independent evidence for the covered bug. For example, consider 

the case of a student who has the bug O-n=O {A} compounded with the bug when borrowing from 

a column with a 0 as the top digit, decrement the bottom digit of the column instead {B}. There 

will never be any evidence for {B} (problems for which {B} alone predicts the students' wrong 

answer) because every problem causing {il} to generate a symptom will be further disturbed by 

{A}.- Special cases like this are handled (once we discover them) by adding them to the starting list 

of bugs to be tried on every student. A related. more frequent problem occurs when bugs that are 

not logically covered ~ppear to be so because the particular test being given did not happen to 

contain the right type of problems. This difficulty can be overcome in large part by the careful test­

item selection that we will describe in Section 3.2. (Also we will discuss a general structure called a 

skill lattice that provides a means of identifying those bugs potentially covered by other bugs, both 

in general and for a specific set of test problems.) 

3.1.4 Coercion - explaining the "noise": 

During the compounding phase the system creates a structure that includes, for each of the 

primitive and compound bugs, the knowledge of where it agrees with the student and where it 

disagrees. After the structure is completed, the problem of noise is considered. The general 

approach is to try to find rationalizations for the discrepancies between the bugs' predictions and 

the student's actual answers. First, the set of hypotheses that have any chance of being selected as a 

diagnosiS is chosen. The current selection criterion is whether the hypothesis explains a given 
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percentage (currently 40 percent) of the student's symptoms. This cutoff saves time and prevents 

coercion from turning a theory for which there is very little evidence into a viable diagnosis. For 

any problem in which a selected hypothesis disagrees with the student's answer, an attempt is made 

to force the hypothesis into generating the student's answer by varying the hypothesis slightly with 

one or more coercions. In the example in Figure 3, the best hypothesis is coerced in two problems: 

in problem 5 by a variant that recognized one and zero as the "digit" ten; and in problem 11 by the 

facts table error 15-8 = 8. 

The coercions are designed to explain local variants of the bug and common performance lapses 

which would otherwise be counted against the bug. There are three types of coercions: facts table 

errors, variants and predicted inconsistencies. Facts table errors are limited to one fact error per 

problem which is off by 1 or 2. (For example, the facts error 9-3 = 3 will not be considered because 

it is off by 3.) These limitations on the use of facts errors as coercions are imposed because any 

possible answer could be explained with enough facts errors. This procedure gets a large number of 

the cases that the human diagnosticians believed were facts errors from looking at the student's 

scratch marks. Variants are local modifications which allow bugs to be applied differently at 

boundary conditions. The set of looked-for variants include considering the units column separately 

from the rest of the problem and treating the leftmost digits specially. 

In certain cases, a bug will cause conditions that do not nOlmally occur. In these cases, students may 

not have developed a consistent way of handling the unusual condition even though it is clear they 

are consistently following the original bug. For example, the bug always borrowing whether or not 

the top digit is larger than the bottom sometimes causes the result in a column to be larger than 9. 

Some students will truncate and usc the units digit Some students will write both digits in the 

answer. Some students will "carry" the extra ten back into the column it was borrowed from 

(thereby getting the correct answer). Some students will do a mixture of these. These three options 

are handled by predicted inconsistencies. Another example is that the bug when borrowing from a 

column which has a zero on top, forget about the decrement operation introduces the condition of 

having a zero on top that has been "touched" by a previous operation. Some students treat this 

condition as they would any other O-n column. However other students will use O-n=O or O-n=n in 

this column even though they will solve "untouched" O-n columns correctly. (These are not 

considered to be bugs in their own right because they never appear in isolation; . they apply only in 

conditions which don't arise unless there is another bug.) The set of inconsistencies that are 

predicted by a bug are stored in the network. 



The coercions arc applied to the buggy procedure. This means that a student can make a facts error 

while doing smallcr from largcr and the systcm will recognize it (see figure 3). After coercions are 

done on each problem upon which the bug and the student disagree. an attempt is made to 

incorporate the coercions into the bug as pieces of the compound. This is done because in the 

evaluation phase a hypothesis is weighted down by the numbcr of coercions it requires unless the 

coercion is consistent throughout the test. 

The correct subtraction procedure is also coerced. This provides a reference plane as to how much 

of the student's incorrect behavior can be due to coercions. If a hypothesis with coercions does not 

explain the answers better than the coercions alone, it is not a very useful diagnosis. As a side· 

effect, coercing the correct subtraction procedure also diagnoses students with just facts table errors. 

3.1.5 Choosing a diagnosis: 

After the coercion procedure, each bug is classified according to how well it explains the answers. 

The classification procedure is a refinement of the one described in Brown and Burton (1978). 

Briefly, it takes into account the number of predicted correct and incorrect answers as well as the 

number and type of mispredictions. Mispredictions which predicted a wrong answer when the 

student gave a correct answer are counted more negatively than mispredictions where the student 

got a wrong answer. (It is more likely that "noise" caused a student to miss an extraneous problem 

than that it caused him to get one right.) Coercions are counted negatively but not as negatively as 

mispredictions. Each type of coercion has its own weight so that different coercions can have 

differing effects on the final evaluation. For example, the variant of recognizing a one followed by 

a zero as 10 counts very little off. The goal of the classification procedure is to put each of the 

hypotheses into one of the classes: consistent bug (Le., almost all of the student's errors are 

explained by the hypothesis); consistent bug but with other symptoms; some buggy behavior but 

not consistent; and unsystematic behavior. 

The members of the highest non-empty class are then compared with each other and the best one is 

taken as the diagnosis. This final comparison allows simple theories that explain slightly less to be 

chosen over more complex theories. In actual use, the results of the entire diagnosis process are 

printed in order to improve the diagnostic process. Figure 3 provides excerpts of a diagnosis. 
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Figure 3 

Diagnosis of compound bug with coercions and noise 

Problems and correct answers: 
43 80 127 183 106 800 411 654 5391 2487 3005 854 700 608 3014 
-7 -24-83 -95 -38 -168 -215 -204 -2697 -5 -28 -247 -5 -209 -206 
36 56 44 88"""68 632 196 450 2694 2482 2977 607 695 399 2808 
Student answers: 
+ 64 + + + 542 106 + 2604 + 1088 + 605 309 + 

Borrow Across Zero & Borrow Skip Equal: 
* 1 ... * *& *** *** ... *** * ***& ... *** **. • 
O-n = n: 
• *** ... ... ... 768 216 ... ... • ... 705 3208 

Smaller From Larger: 
44 *** 164 112 132 768 204 450 3306 

• ** - bug predicts student's incorrect answer 
'" - bug predicts student's correct answer 

... 3023 613 705 401 3212 

- bug predicts the correct answer, student's answer incorrect answer 
+ - student's answer is correct 
& - coersion applied 

Diagnosis: a consistent bug = {Borrow Across Zero & BorrowS!<ipEqual} 

The d i ag nos i sis a compound of the bug when borrowing from a column with zero 
on top, leave that column alone and borrow from the next column to the . left 
instead and the bug when borrowing from a column in which the top and bottom 
digits are the same, leave that column alone and borrow from the next column to 
the leU. Problem 5 was coerced by the variant that recognizes one and zero as 
the "digit" ten thus blocking the first bug. Problem 11 was coerced by 
including the facts table error 15-8=8 with the diagnosis for this problem. 
The best hypothesis did not predict problem 2 correctly, however it still had 
enough evidence to be chosen as the diagnosis. The bugs smaller from larger 
and O-n=n are included because they explain the answer that is not explained 
by the first diagnosis. Note that even though there ;s positive evidence for 
them, there is substantial negative evidence against them as well. 

3.2 Interaction between test and diagnosis 

An integral part of an off-line diagnostic program is the set of test problems that are given to the 

students. DEBUGGY includes automatic programs to measure various diagnostic properties of tests 

and symbiotic programs that aid test creation. One essential property for a test is that of 

distinguishing all of the bugs. (One test analysis program detelmines the equivalence classes of 

bugs imposed by a test. That is, it determines which bugs give the exact same answers on every 

problem on the test.) Using this program, we were able to design a test capable of distinguishing 

among 1200 compound bugs with .only 12 problems! A second important property of a test is that 

it cause each bug to be invoked often enough to determine that it is consistent. The current tests 



that we are using are designed to cause each primitive bug to generate at least three errors. To 

accomplish this it was necessary to have 20 problems on the test 

Another important property of the test is that it generate answers that will serve as useful input for 

the diagnostic program. For DEBUGGY's compounding heuristics to be maximally effective, the 

test should be designed to test the subskills on different problems so as to maximize the chances of 

finding evidence for a bug in one subskill without the interference of a bug in another subskill. 

This can be difficult. For example, consider the test given the student whose diagnosis appears in 

Figure 2. Each of the four pIimitive bugs that are constituents in the final diagnosis have 

independent evidence in only one problem. If any of these problems had not been on the test, the 

diagnostic program would not have had the correct diagnosis in its search space of hypotheses. One 

possible alleviation is to use partial evidence (such as column evidence) to expand the number of 

primitive bugs considered for compounding. The interactive diagnosis system uses this solution. 

For off-line diagnosis, however, the test can be designed in advance to minimize this problem. 

DEBUGGY includes a program based on the skill lattice (described in a later section) to find those 

subskills that are not being tested independently. The independence constraint opposes the goal of 

producing small tests because a small test must exercise as many skills as possible in each problem. 

The 12-prob1em test mentioned above requires several different skills in each problem. For 

isolating bugs in students who have primitive bugs, the test works very well. On the other hand, 

when a student with a compound bug misses a problem, it is sometimes difficult to recognize that 

fact from the primitive bugs separately. By adding more problems that use the subskills 

independently, the test increases the effectiveness 'of the diagnostic algorithm. 

3.3 Interactive Diagnosis 

The DEBUGGY system described above is an off-line system. An interactive version of 

DEBUGGY (called IDEBUGGY) has also been developed. -Interactive analysis has the potential 

for allowing a much faster, better confirmed diagnosis because the problem sequence can be tailored 

to the student. IDEBUGGY uses many of the same internal routines as DEBUGGY with a quite 

different control structure. In addition, interactive use requires the techniques of problem generation 

and recognition of logical equivalence. Whereas DEBUGGY has been tested on thousands of 

students, IDEBUGGY has seen little use and hence the techniques are correspondingly less refined. 

The discussion of IDEBUGGY is included here in order to layout the space of diagnostic 

techniques by pointing out differences between on-line and off-line diagnosis. 

IDEBUGGY presents the student with problems and using his answers, maintains (generates and 

evaluates) a set of hypothetical diagnoses from the set of primitive bugs and the space of compound 

bugs. After getting each student answer, a choice is made whether to give another problem or to 

stop and report the diagnosis. Thus, each new problem is determined by the state of possible 
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hypotheses up to that point. When enough evidence for one hypothesis-- is collected, and there are 

no closely competing hypotheses, that hypothesis is returned as the diagnosis. 

3.3.1 Organization of IDEBUGGY: 

IDEBUGGY is organized as a collection of tasks together with a heuristic strategy for deciding 

which task to do next. These tasks include such things as generating a good successive problem, 

reconsidering previously suspended hypotheses or deciding to produce a diagnosis. Before 

describing the operation of the tasks, we present a brief description of the context within which the 

tasks operate and of how the context originates. Each task is small in terms of the amount of 

computation it requires. A task changes the global context so that after it has run a different task 

will be choosen. This organization allows IDEBUGGY to either\ be directed by its own strategy 

heuristic or be guided in a symbiotic manner by a teacher or diagnostician. The global context 

consists of all hypotheses (primitive and compound bugs) that have been considered. With each 

hypothesis is noted how well it predicts a subset of the problems that have been given the student 

so far. An assumption made during design of IDEBUGGY (proved true in use) is that there are 

too many hypoth.eses to try all of them on every problem in interactive use. Thus, the set of 

hypotheses to compare with each student answer is carefully chosen to control the proliferation of 

hypothesis/problem pairs. 

To start, the student's flrst problem is tried on a preselected list of common bugs. This provides an 

initial set of hypotheses. Before each task choice, the set of hypotheses that explain the observed 

behavior well enough to be considered reasonable diagnoses are selected as the "current set." The 

"current set" is an important factor for the decision of what task to do next. (The non~current 

hypotheses are saved for later consideration; no hypothesis is ever thrown away.) 

The tasks available at each choice are: 

(1) generate a simple problem; 

(2) generate a problem that splits between the bugs in the current set of hypotheses; 

(3) allow more obscure bugs as hypotheses; 

(4) create more hypotheses by extending (compounding) the current ones; 

(5) reconsider previously suspended hypotheses; 

(6) propose a diagnosis; 

(7) or: give up. 

The choice of task is determineCl primarily U1 me size of the current set of hypotheses. If there is 

more than one bug in the current set, a problem is generated which splits between them. That is, a 

problem is found that will generate positive evidence for at most a subset. (The problems of doing 

this will be addressed in the next section.) If there is only one hypothesis in the current set, there 

are several alternatives: gain more support for this hypothesis by generating a problem that splits 



between it and the next best hypothesis (even though the second best one is not good enough to be 

current); extend the current hypothesis by compounding it with other hypotheses and see if any of 

these do an equally good job of explaining the evidence; generate a problem which tests a subskiU 

not yet tested so that other bugs are not overlooked; or propose the current hypothesis as the 

diagnosis. 

If the current set is empty, IDEBUGGY can either: consider more obscure bugs for the hypotheses, 

combine existing hypotheses into compounds, generate simple problems which isolate single 

subskills, or give up if the student has already answered many problems. Generating problems 

which test subskills in isolation is done because the student's bug may be a compound. A problem 

which tests a single subskill may turn up one of the primitive constituents which can then be 

pxtended into a complete hypothesis. 

When the decision is made to extend a hypothesis, it is combined with every hypothesis that has 

full-problem evidence, with every hypothesis that has single-column evidence and with a set of 

common primitive bugs. This allows many more possibilities than the heuristics used off-line, but 

since the number of problems given the student is less, the chances of getting extraneous evidence 

for inappropriate hypotheses is reduced. When a hypothesis has accumulated sufficient positive 

evidence, an attempt is made to coerce its negative evidence. 

To reduce the amount of computation performed when a new student answer is received, a large 

number of the hypotheses are not tried on new data. Hypotheses that are in this state are referred 

to as "suspended" because they have been suspended from consideration by tile program. 

Hypotheses are suspended when they have mispredicted more than a certain percentage of the 

student answers (currently 30 percent). Because a student may make performance errors in the first 

problems he does, the correct hypothesis can be suspended. To guarantee that the best hypothesis 

is found, suspended hypotheses are reconsidered whenever a current hypothesis has mispredicted 

more problems than the suspended hypotheses have. During reconsideration, each hypothesis is 

tried on problems it has not yet done, i.e., those the student answered while the hypothesis was 

suspended. If the hypothesis misprcdicts one, it is suspended again. If it correctly predicts all of 

them, it is added to the set of current hypotheses. 

3.3.2 Problem generation: 

The diagnostic system needs to be able to generate (or have prestored) problems with many 

different features. This need arises when the system has more than one hypothesis and requires a 

problem that differentiates between them. For any domain with a large number of hypotheses to 

consider, prestoring problems for all possible combinations of bugs is not practica1. The system is 

therefore faced with the problem of generating problems to fill this need. A piece of leverage that 

the system does have is an executable model of the bugs that can determine whether or not any 
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particular problem wm differentiate between them (by running them and seeing if the answers are 

different), so the system only needs a generator that is likely to have the right features. 

IDEBUGGY uses problem generators designed to produce problems specific to a small number of 

conditions (listed in Table 1). Each generator produces a' problem sequence that is rich in problems 

containing their target condition, though not all the problems contain it. The resulting problems are 

filtered by actually running them through the models of the bugs to find the symptom-producing 

problems in the sequence. This freedom allows more randomness in the generation process which 

in turn avoids over constraining the generated problems. For example, the generator for problems 

with the same digit in both the top and the bottom can be random about . whether or not the 

columns on either side of that column require borrowing. This allows the single condition 

generator to be used effectively to generate symptoms for compound hypotheses. The generators 

are associated in the network with each primitive bug. For compound bugs, the generators for each 

of the primitives are cycled through the generators stored off the primitive bugs. 

arbitrary problems 
problems that do not require borrowing 
problems that require borrowing 
problems that have zero on the top 
problems that have zero on the bottom 
problems that require borrowing from zero 
problems that borrow from two zeros in a row 

Table 1 

Problem Generators 

problems that have the same digit on top and bottom in a column 
problems that borrow from a column which has a blank on the bottom 
problems that have a zero in the top and bottom of a column 
problems that have one and zero as the leftmost digits 

problems that have a one in the top number 
prob lems that require a borrow from a column which has zero over blank 
problems that require a particular subtraction fact 

In some cases two hypotheses will be very similar (two compounds, for example, that share common 

elements) and the above process will not find a problem that splits them. In these cases, an 

addition~l heuristic is used provided that the two hypotheses give different answers to one of the 

problems the student has already solved. Variants of the existing. splitting problem are found by 

incrementing and decrementing some of its digits, adding extra columns on the left or right, or by 

deleting columns. 



The "varying-an-existing-problem" heuristic is also used when attempting to gain confirming 

evidence for a hypothesis that explains most but not all of the student's answers. Problems similar 

to the ones that the hypothesis mispredicted arc generated. If the mispredicted problems were 

careless errors, the new problems will increase the positive evidence for the hypothesis. If they were 

symptoms of a part of the student's bug that is not included in the current hypothesis, the new 

problems may provide some evidence as to what the missing piece is and will, at least, provide 

negative evidence against the current hypothesis so that it is not proposed (incorrectly) as a 

diagnosis. 

3.3.3 Logical equivalence: 

In IDEBUGGY, logical equivalence is a significant problem because the program can waste a lot of 

time attempting to split logically equivalent hypotheses. The problem is differentiating when a bug 

{A B C} is logically equivalent to another bug {D E F} from when the problem that separates the 

two has not yet been found. Our heuristic solution is to use the problem generation techniques 

mentioned earlier to try to find a problem on which the two bugs differ (hence proving that they 

are not equivalent). If, after some suitably large number of attempts (500), they are not shown to 

be different, then the hypotheses are treated as if they were the same. (Footnote: This heuristic is useful 

because it uses "smart" problem generators and it gets bettcr as the problem generators get better.) This is done by 

selecting the hypothesis with the simplest bug (or one of the simplest in case of ties) to remain in 

the current set and having the selected hypothesis point at the others. Whenever a new problem is 

tried on the selected member, however, it is also tried against all of the equivalent ones and any 

that are found to differ are split out. 

4.0 Definition of Subskills 

One interesting benefit of the database of bugs is that it is possible to define an intuitively 

appealing notion of subskill in a way that has many uses in the diagnostic process. The term 

"subskill" has been used in the diagnostic literature to informally refer to any part of the skill being 

talked about. Additionally, there have been attempts to characterize subskills in terms of groupings 

of test items or as pieces of a representation of the correct skill (Durnin and Scandura, 1973). 

These notions of subskill are toe. coarse to account for the range of behaviors captured by the 

database of bugs, in the sense that there is no direct correspondence between the bugs and any 

other notion of subskill. The primary limitation of existing characterizations of subskill is that they 

are driven from the correct skill and nothing else. We have observed bugs, however, which have no 

vestiges in the correct skill. For example, some students when borrowing will skip columns that 

have tlle same number on the top and the bottom. We would like to say that these students are 

lacking a subskill that a student who subtracts correctly has. This subskill is knowing that the 

bottom number doesn't matter during a borrow operation. This subskill is the absence of a 

procedure in the correct skill. . (There is an alternate view that the buggy student is making 
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distinctions that are inappropriate for this skill.) Which things constitute subskills when left out of 

the correct skill can be determined empirically from the database of bugs. 

A subskill is defined to be any isolatable part of the skill that it is possible to mislearn. This is 

determined from the database of primitive bugs by considering how they partition the set of all 

possible problems. Every bug separates the set of all possible problems into two partitions: those 

for which it generates the correct answer and those for which it generates an incorrect answer. 

Different bugs will often generate different partitions, though it is possible for two bugs to generate 

the same ones. For example, the bugs O'n=O and O'n=n generate equal partitions because any 

problem that causes O'n=O to produce an incorrect answer also causes O'n=n to produce an 

incorrect answer. The bugs are grouped into equivalence classes by the equality of their 

partiti{'nings of the set of all possible problems. Each of the equivalence classes that arises from 

this analysis determines a subskill. This gives rise to subskills that are much finer grain than 

normally recognized. While in theory this leads to the consideration of an infinite number of 

problems, in practice one need only consider enough problems to completely distinguish between 

bugs. 

The subskills can be placed naturally into a lattice by the relationship gets correct answers on all 

the same problems and more. The maximal element in the lattice is the skill of knowing how to 

subtract all possible problems (having all problems in the "correct" partition) and the minimal 

element is the lack of any subtraction skill at all (having no problems in the "correct" partition). 

Figure 4 presents the skill lattice for subtraction based on bugs we have observed. We obtained 

supporting evidence for this notion of subskill when, after determining the lattice, it was possible to 

identify and name all of the subskills produced. It is . also worth noting that the subskills arc 

independent of the representation chosen for the bugs; it stems only from their behavior. 

The most surprising thing about the skill lattice for subtraction is its complexity. There are 58 

subskills necessary for even this simple skill (approximately one for every two bugs). Another 

surprising thing is that many of the ·subskills are taken for granted; seemingly because the situations 

in which they occur are not recognized as decision points in the final skill. For example, students 

must learn to ignore the bottom number in a column they are borrowing from. This captures the 

intuition that part of expertise is knowing when to ignore what. 



o Correct skills 
1 No subtraction skills 

Figure 4 
Skil11atticc for subtraction 

2 Subtract 0 from a number whose right digit is 0 
3 Subtract 0 from a number 
4 Subtract columns which are n-n or n-O 
5 Subtraction without borrowing 
6 Borrow from somccolumns with a digit on the bottom 
7 llorrow from columns whose answer is the same as their bottom digit 
8 Borrow from a column with a 9 or a larger number on top 
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9 Borrow from a column with a larger top digit 
10 Borrow from a column with zero on top when blank on bottom 
11 Borrow from a column with zero on both top and bottom 
12 Borrow from a column unless one is on top and a non-zero digit is on the bottom 
13 Borrow from a column unless a one on top and bottom 
14 Borrow in two consecutive columns 
15 Borrow from columns with the same digits on top and bottom 
16 Borrow from columns that have nine as the bottom digit 
17 Borrow from columns with the same non-zero digits on top and bottom 
18 Borrow from columns which have an answer of zero 
19 Borrow from the leftmost column when it has a non-blank in the bottom 
20 Borrow more than once per problem 
21 Can borrow then not borrow 
22 Borrow from columns with two on the bottom 
23 Borrow from leftmost columns or columns that have a non-one on top 
24 Borrow from columns with top digits smaller than the bottom digits 
25 Bo: ~ow from columns that have a top digit one less than the bottom digit 
26 Borrow from the leftmost column 
27 Borrow once in a problem 
28 Borrow from columns that have the top digit larger than the bottom 
29 Borrow from a column with the top digit greater than or equal to the bottom 
30 Borrow from a column with a zero on top 
31 Borrow from a middle (not leftmost) column with a zero to the left 
32 Borrow from leftmost column of the form one followed by one or more zeroes 
"33 Borrow from a column with a zero on top and a zero to the left 
34 Borrow from or into a column with a zero 011 top and a zero to the left 
35 Borrow into a column with a zero on top and a zero to the left 
36 Borrow from a column with a zero on top and a blank on bottom 
37 Borrow into a column with a nonzero digit on top 

. 38 Borrow into a column with a one on top 
39 Borrow when difference is 5 
40 Subtract columns with a one or a zero in top that require borrowing 
41 Subtract columns with a zero in the top number that require borrowing 
42 Subtract a column with a zero on top that was not the result of decrementing a one 
43 Borrow into a column with a zero on top when next top digit is zero 
44 Borrow from a column with a blank on the bottom 
45 Borrow from a column with a one on top 
46 Subtract numbers of the same lengths 
47 Subtract a single digit from a large number 
48 Subtract columns unless the same digit is on top and bottom 
49 Borrow all the time 
50 Subtract when one is in top 
51 Subtract when neither number has a zero unless the 0 is over a 0 
52 Subtract columns when the bottom is a zero and the top is not zero 
53 Subtract when a column has a zero over a blank 
54 Subtract numbers which have a one over a blank that is not borrowed from 
55 Can subtract a number from itself 
56 Subtract numbers with zeros in them 
57 Subtract problems that do not have a zero in the answer 
58 Subtract numbers when the answer is no longer than the bottom number 
59 Subtract leftmost columns that have top and bottom digits the same 
60 Subtract columns that have top and bottom digits the same 



4.1 Uses of skiil lattice in test generation: 

A subskill lattice can be created from any test by considering the way the bugs partition the 

problems on the test. The resulting lattice will be a homomorphic image of the maximal lattice 

resulting from considering all possible problems. Any nodes in the maximal lattice that are mapped 

onto the same node in the test lattice are not distinguishable by that problem set (assuming one is 

considering an answer as either right or wrong). This provides a measure of the extent to which 

one subskill may be hidden by another in the test. When designing a test for a diagnostic system 

that works by considering only the correctness of the answers, this mapping infonnation is very 

useful. Testing two subskills together prevents students from demonstrating that they do know one 

of them if they don't know the other. For example it may be that every problem that involves 

subtracting a zero from a digit also invf)lves borrowing. If a student cannot borrow, we will not 

know whether he can subtract a zero or not. Diagnostic systems such as DEBUGGY which try to 

predict the exact wrong anwers given have a better opportunity to separate the student's sub skills. 

However, even these systems can benefit from subskill independent tests when producing partial 

diagnoses for students who are not consistent. 

4.2 Use of skill lattice in diagnosis: 

The skill lattice provides a useful heuristic for attacking the problem of having one bug hide the 

symptoms of another. In some situations, the diagnostic program is faced with the problem that its 

best current hypothesis {A B} explains some of the students' answers but not all of them. One 

explanation for this situation is that there is some other bug C which is also present, that is, the 

student actually has bug {A B C}. If {A B} is not covering C (Le., there exists some problem for 

which C generates a wrong answer but both A and B generate the right answer), there will be some 

independent evidence that C is present (the problem that C predicts to be wrong) and the 

combination heuristic will try compounding {A B} and C. If, however, {A B} does cover C 

(because every problem for which C generates a wrong answer either A or B generates a wrong 

answer), there will never be any evidence for C separately, and {A B} would (potentially) have to 

be compounded with all other primitive bugs to discover {A B C}. 

The ski11lattice contains exactly the infonnation to identify candidates for C. We first calculate the 

skill lattice using the problems the student has answered and find the union of A's and B's 

"incorrect partitions". .This union defines a cut through the lattice such that all of the skills below 

this cut have "incorrect partitions" that are subsets of the union. The skills below the cut are 

covered by {A B} and any bugs of these skills are candidates for the hidden bug C. If this set is 

large, the problems predicted wrongly by the bug {A B} can be used to produce the candidates for 

C ordered by how well their "incorrect partition" matches the answers not explained by {A B}. 
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4.3 Diagnosis to the subskill level: 

In the light of our characterization of subskills, we reconsider the possibility of diagnosing only on 

the basis of whether a student's answers are right or wrong. The method we used to define subskiU 

depends only on which problems were missed, so it should be possible to determine which subskiIts 

are errant by only considering right versus wrong. Scoring test items as right or wrong is fast and 

there is the possibility that a very fast, simple diagnosis system could be built based on this 

technique by locating the student's template of right and wrong answers in the lattice. It is our 

belief that a fast system could be developed around this paradigm. 

There is a limiting problem with this approach. From a practical standpoint, bugs of the same 

subskill may require different remediation. Consider two bugs of the borrow subskill: lcaving 

blanks in the answer in any column which requires a borrow, and decrementing the minuend digit in 
the first column that requires a borrow before adding tcn to it. These two bugs will be grouped 

together by any classification scheme that looks only at right vs wrong because they cause wrong 

answers on exactly tlle same set of problems (any problem that requires borrowing). However, it is 

clear that a student with the second of these bugs understands quite a lot about borrowing while the 

student with the first probably understands very little. 

The use of skill lattice also presents interesting possibilites in combination with methods used in 

DEBUGGY. In particular it provides a clue to the problem of "noise" by characterizing the 

problem-partitionings that are possible within the boundaries of the theory. If the student has a 

partitioning that is not in the lattice or constructable by combination of partitions that are in the 

lattice, the student's test must have "noise." Of course knowing that a student's solution contains 

noise is quite different from knowing where the noise is or what is producing it, but it is an 

interesting case of the program recognizing that something is beyond the limits of its theory. 

Conclusions 

We have described a system which has been used to diagnose consistent procedural bugs in more 

than a thousand students and which is still being used in classrooms. From this experience we have 

learned that diagnosis of real students using only the student's answers is difficult but possible if 

one has a strong model of the correct skill and its bugs. We have described techniques for 

implicitly reducing the size of the search considered during diagnosis and searching the reduced 

space in an efficient order. An important lesson from this discussion is that the diagnostic heuristics 

go hand in hand with test generation; one can be designed to overcome (to some .extent) the 

limitations of the other. We also presented an empirically based definintion of subskill and 

explored some of its applications. 
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